
O3R

ifm CSR

Mar 01, 2022

CONTENTS

1 Everything related to the O3R family 1
1.1 Products Description . 1
1.2 Getting Started . 6
1.3 Parameters . 9
1.4 Docker on O3R . 50
1.5 FAQ - Frequently Asked Questions . 65

2 ifm3d library 67
2.1 ifm3d Overview . 67
2.2 Installing the software . 68
2.3 Basic Library Usage . 80
2.4 ifm3d - Command Line Tool . 89
2.5 Python API Reference . 102
2.6 C++ API Reference . 116

3 Indices and tables 117

4 ROS wrappers for ifm3d 119
4.1 ifm3d-ros . 119
4.2 ifm3d-ros2 . 126

5 Resources available for download 133
5.1 Previous versions of the documentation . 133

Python Module Index 135

Index 137

i

ii

CHAPTER

ONE

EVERYTHING RELATED TO THE O3R FAMILY

1.1 Products Description

1.1.1 FIRMWARE 0.13.13 RELEASE NOTES !!!!!PRELIMINARY!!!!

The following release note provides an overview of the features of the Firmware 0.13.13
Version. Please refer to the ifm O3Rs website www.ifm3d.com for further information.

Previous Releases

There is no previous FW release for image processing platform M03975. The FW-release
0.13.13 does not operate with image processing platform M03903 and their heads.

Compatible Image Processing Platforms

This firmware release can be applied to the following ifm image processing platform:

article comment

M03975 preseries sample

M04239 preseries sample, housing change

Supported Heads

This firmware release supports the following ifm camera articles:

General Features

• Connectivity: The O3R image processing platform is a multi camera image processing
platform.

– Ports: ifm camera articles can be connected to all six ports (Port0 .. Port5)

– Ethernet: 1x GB ethernet connection [eth0]

1

http://www.ifm3d.com

O3R

• Data Interface: The ifm3d library is recommended for interfacing with the O3R image
processing platform (download here) The idea of ifm3d is to let developers quickly ramp
up and also deploy the image processing platform. Sample programs, that illustrate the
various functions and good usage, are provided for the following applications frame-
works:

– C++

– Python bindings: use pip install ifm3dpy, (see here)

– ROS1 wrapper:

• SSH access: Access to the embedded Linux operating system is enabled through the oem
user.

• Docker containers: Docker containers can be used to deploy code embedded on the
image processing platform. Management of docker containers, like upload, download,
autostart, delete is handled through SSH access by the oem user.

ifm Camera Usage

The ifm camera heads are in one of the following states:

• CONF: Configuration state, no data acquisition

• IDLE: pause data acquisition

• RUN: periodic data acquisition @framerate

3D-Camera Features

NEW In contrast to other TOF-systems the ifm cameras have no ambiguity problem. Objects
are measured only within the measurement range, which starts at an offset distance and for
the length of the range. Objects before the offset and beyond the measurement range are
not detected and more importantly can not disturb the measurement. The range and the
offset can be adjusted to the current application. All data acquisitions are carried out in high
dynamic mode with multiple exposure times.

• Modes:

– standard_range2m: measurement range [0..2] with offset=0 or [0.5..2.5] with off-
set=0.5 etc.

– standard_range4m: measurement range [0..4] with offset=0 or [1..5] with offset=1
etc.

– cyclic_4m_2m_4m_2m: periodic change between 4m and 2m measurement range

• Acquisition Parameters:

– framerate: periodic image acquisition at 1/framerate-intervals

– delay: not functional (timing is currently free-running only)

– expLong: long exposure time of high dynamic acquisition

– expShort: short exposure time of high dynamic acquisition

– offset: shift of measurement range in 0.5m steps

• Available Output Data:

2 Chapter 1. Everything related to the O3R family

https://github.com/ifm/ifm3d

O3R

– distance: radial distance between camera and object

– x: x-coordinate of object pixel

– y: y-coordinate of object pixel

– z: z-coordinate of object pixel

– amplitude: detected signal strength

– confidence: metainformation for each pixel

– Metadata: image width [pix], image height [pix], timestamps

• Data Processing:

– various Thresholds: invalidate pixels on various criteria

– Filters:

∗ spatial filters and parametrization

∗ temporal filters and parametrization

RGB-Camera Features

The RGB cameras acquire color images of the objects.

• Modes:

– autoexposure

• Acquisition Parameters:

– framerate: periodic image acquisition at 1/framerate-intervals

– delay: not functional (timing is currently free-running only)

• Available Output Data:

– jpg-encoded RGB image

Known Issues

• Connectivity: ports must be connected pairwise with the same head-type: [Port0,Port1]
[Port2,Port3] [Port4,Port5]

• Frame rate limitation: M03976 is limited to 1..10Hz

• No time synchronization: synchronized data acquisition / image triggering between
ports is currently not possible.

• Software triggering in IDLE state is not operational

1.1. Products Description 3

O3R

Look forward to these features in future releases

• CAN: messages can be retrieved via a CAN bus system

• [eth1]: enable the second ethernet port

• USB: a mass storage device is accessible for data collection

• avoid crosstalk between multiple cameras by selecting a channel value

• synchronization among different ports - it will be possible to define the acquisition timing
for SW-triggered and periodic acquisitions (eg. two heads have a synchronized acquis-
tion)

Update Firmware Procedure:

Update procedure:

1. Open http://192.168.0.69:8080/ in web browser. The SWUpdate web interface is shown.

2. Drag and drop the *.swu firmware file into the software update-window. The upload
procedure starts.

1.1.2 Images description

Description of the available images

This document gives a high level overview of the images available for the O3R. Receiving
certain images can be turned ON/OFF using the schema mask (documentation coming soon).

Note: For more information about the types, sizes and other implementation as-
pects, please refer to the ifm3d API documentation.

Raw Amplitude image and Amplitude image

Each pixel of the amplitude matrix denotes the amount of modulated light (i.e., the light from
the camera’s active illumination) which is reflected by the appropriate object. Higher val-
ues indicate higher signal strengths and thus a lower amount of noise on the corresponding
distance measurements. The raw amplitude image is not normalized, which can lead to in-
homogeneous image impression if a certain pixel is taken from the short exposure time and
some of its neighbors are not. Invalid pixels have a value of zero.

The amplitude image is the normalized image over the different exposure times.

4 Chapter 1. Everything related to the O3R family

http://192.168.0.69:8080/

O3R

Distance image (radial)

Each pixel of the distance image denotes the ToF distance measured by the corresponding
pixel or group of pixels of the imager, along the respective pixel direction. The distance value
is corrected by the camera’s calibration, excluding effects caused by multi-path interference
and multiple objects contributions (e.g., mixed pixels). The reference point is the center of
the back of the camera head’s housing. Invalid pixels have a value of zero.

Distance noise (radial)

The distance noise represent the estimated standard deviation of the distance error, in meters
for each pixel. Coming soon in ifm3d library

Confidence

The confidence image give detail about the validity of each pixel and the reason (if any) why
it was invalidated. See details here.

Reflectivity

The reflectivity image represents the estimated reflectivity in the near infrared spectrum of
the objects in the scene. See also the minimum reflectivity filter. coming soon in ifm3d library

Point cloud (XYZ)

The XYZ image (also called point cloud) is a 3-channel image of the spacial planes X, Y and Z.
It uses the Cartesian coordinate system. The value 0 denotes an invalid pixel.

Unit vectors

The unit vectors are vectors of size 1 that represent each pixel’s direction. They are com-
puted from the intrinsic calibration of the camera and the optical model. They are used in
combination with the distance image to compute the point cloud.

JPEG image

This image is the JPEG-encoded RGB image streamed by the 2D imager, when available.

1.1. Products Description 5

O3R

The confidence image

The confidence image is accessible as part of the data streamed from the O3R device. This
image contains information about the validity of each pixel. If a pixel is invalid, the confidence
image explains why is has been marked as invalid. The values are as follows:

• 1: CONF_INVALID - indicates that the pixel is invalid;

• 2: CONF_SATURATED - the pixel is overexposed/saturated;

• 4: CONF_BADAMBSYM - the pixel had bad symmetry, probably because of motion (see
symmetry threshold);

• 8: CONF_LOWAMP - amplitude lower than the minimum amplitude, or distance noise
threshold exceeded;

• (16|32): CONF_EXPINDEX - indicates whether the short, medium or long exposure is
used for this pixel: expIndex = (v & CONF_EXPINDEX) >> 4 indicates the index of the
exposure time used by this pixel where low indices indicate shorter exposures;

• 64: CONF_INVALID_RANGE - the pixel is outside of the measurement range;

• 128: CONF_SUSPECT_PIXEL - this is a bad pixel on the chip;

• 256: RESERVED

• 512: CONF_EDGEPIXEL - edge pixels refer to the image edges which are sometimes
invalidated by lateral filters;

• 1024: CONF_UNPLAUSIBLE - pixels remaining after shifting the offset, between the
camera and the beginning of the shifted range;

• 2048: CONF_REFLECTIVITY - the reflectivity is below the threshold;

• 4096: CONF_DYNAMIC_AMPLITUDE - the pixel is probably part of the halo around a
very bright object (see the dynamic amplitude threshold (documentation coming soon)
and the stray-light filter);

• 16384: CONF_MIXEDPIXEL - the pixel is a mixed pixel, part of which is measuring the
object and the other part the background;

• 32768: CONF_ISOLATED - an isolated pixel with random amplitude in an area where no
amplitude is measured.

This product description contains the Changelog/Release note of the latest hardware/software
version.

1.2 Getting Started

1.2.1 Hardware unboxing

If nobody tampered with your O3R package, you should have following hardware:

• Camera head (two of them if you ordered the developer kit)

6 Chapter 1. Everything related to the O3R family

O3R

• VPU (Video Processing Unit)

• FPD cables to connect the head(s) to the VPU

You need a strong enough power source: 2.5A and 24V minimum.

1. First, connect the head(s) to the VPU; the only requirement is to connect pairs of same

1.2. Getting Started 7

O3R

imager types together, for instance as shown below:

2. Connect power to the VPU - ATTENTION: PIN2 is power! PIN3 is ground

3. Connect the ethernet cable (not included in the package)

4. Wait until you see the ethernet LED flashing before pinging/connecting to the VPU.

That’s it about the hardware. Next step: software installation.

1.2.2 Software installation instructions

Network configuration

The default IP address of the VPU is 192.168.0.69. A good first step is to make sure you can
connect to the VPU:

ping 192.168.0.69

If you do not receive an answer from the camera, you can try to adjust your network settings.
Your laptop’s IP should be within the same subnet’s IP-range (for instance, 192.168.0.10).

Software installation

The ifm3d (ifm3dpy, for python) is the go to library for ifm’s 3D cameras. It provides the
possibility to easily change parameters, get images and even more. The next steps will cover
the installation steps and general usage of ifm3d, and how to unlock the O3R capabilities.

We provide multiple interfaces to use ifm 3D cameras. Follow the links below to find the
relevant installation instructions:

• ifm3dpy (python installation)

• ifm3d (Linux c++ source build)

• ifm3d for Windows (Windows c++ source build)

8 Chapter 1. Everything related to the O3R family

O3R

• ifm3d-ros (ifm3d for ROS, source build)

• ifm3d-ros2

This section should help you with the first steps using the O3R.

1.3 Parameters

1.3.1 Settings Description

Acquisition Settings

Modes

Variable
name

Short description Min/max values

mode This parameter designates themeasurement
range: 2 or 4 meters.

standard_range2m, stan-
dard_range4m (default)

Learn more about the modes.

Exposure Times

Variable name Short description Min/max val-
ues

expLong, exp-
Short

These parameters are used to set the exposure
times.

1–5000 µs

Exposure times are utilized to maximize the number of valid pixels in a scene. The use of
multiple exposures permits the camera to operate in “dynamic” environments that require
the detection of dark and light objects at both the minimum and maximum ranges.

The proper exposure time for a pixel depends on factors such as the dynamics of the scene and
whether the target is moving or stationary. For highly reflective targets or for motion, a short
exposure time is best. For targets far away or with low reflectivity, we prefer a high exposure
time. As such, it is common that all targets of a scene cannot be properly exposed with a
single exposure time. To reduce noise and the number of overexposed/underexposed pixels,
we use three exposures for each frame. The “experimental_high” mode provides two settable
exposure times (expLong and expShort) plus a third static exposure (set at 30 µs) designed
to help detect highly reflective targets in the very near range (~1 m). Note that using a small
ratio of exposure times helps reduce noise in transitions regions (where neighboring pixels
use different exposure times).

Note: You can find which exposure time is used for each pixel by analyzing the
confidence image as detailed here.

1.3. Parameters 9

O3R

Offset

Variable name Short description Min/max values

offset Shifts the start point of the measured range (see mode) +/-30 meters

Coded modulation dictates the base range of the camera. (e.g., 0.2 to 2 m). Coded modulation
also allows this range to be offset or shifted from its start point. In the example of 0.2–2 m
base range, an offset of 1 would lead to a 1.2–3 m range. Continuing this example, an offset
of 2 leads to a 2.2–4m range. The offset can be changed frame by frame.

Learn more here.

Framerate

Variable
name

Short description Min/max values

framerate Defines the number of frames captured each
second

1 to 20 frames per second
(FPS)

The FPS highly depends on the applied imager settings (exposure mode and times, filters,
etc.). Higher exposure times, for example, negatively impact the overall FPS. The O3R is
designed to achieve 20 FPS in the 2 m and 4 m modes, regardless of applied settings. Higher
FPS may be achievable by reducing the applied settings.

Filters

Maximum Distance Noise

Vari-
able
name

Short description Min/max values

maxDis-
t-
Noise

Defines the maximum allowable distance noise. Its value rep-
resents the standard deviation of the distance value, in me-
ters.

0 to 1. De-
fault 0.05 -> 5
cm noise

Typical filters tend to utilize “broad strokes” when making decisions on which pixel to keep
andwhich to filter. These “broad strokes”may eliminate pixels that are critical to the use case.
By utilizing the noise value, we only eliminate pixels with the highest noise value (e.g, ambient
light) while preserving the maximum amount of usable data. Applying filters in conjunction
with the maximum distance noise filter increases the potential for usable pixels in the scene.

When to change default:

• Lower the max. distance noise value if you are attempting to measure an object with
high precision (e.g, box dimensioning).

• Increase the max. distance noise value if it is more important to evaluate all pixels in
the scene, regardless of their noise (e.g., obstacle detection).

Learn more here.

10 Chapter 1. Everything related to the O3R family

O3R

Minimum Amplitude

Variable
name

Short description Min/max values

minAmpli-
tude

Defines the minimum amplitude value required for a
pixel to be valid

0 to 1000. De-
fault: 20

A pixel is valid if the energy (amplitude) received is above the defined threshold. The mea-
sured amplitude is primarily affected by both the reflectivity of the object and its distance to
the camera.

When to change the default:

Lower the default value when the standard targets are known to have low reflectivity (e.g.,
<10% like matte black targets). A lower amplitude threshold is also valuable when attempting
to detect negative obstacles (e.g., stairs). It is recommended to enable a noise filter (temporal
or adaptive filter) when lowering the default minimum amplitude.

Learn more here.

Adaptive Noise Bilateral Filter and Median Filter

Variable
name

Short description Min/max values

anfFil-
terSize-
Div2

Adaptive Noise Bilateral Filter. mask size is
(2*anfFilterSizeDiv2+1)^2.

0: disable the filter 1: 3x3 2
(default): 5x5 3: 7x7

median-
SizeDiv2

Size of the mask for spatial median filtering
(the size is (2*medianSizeDiv2+1)^2)

0 (default): disable the filter
1: 3x3 2: 5x5

The adaptive bilateral noise filter reduces distance noise while also preserving object edges.
Utilizing a larger number of pixels (e.g., 7x7) in the mask will, in most cases, result in better
image quality.

We recommend that you typically use the bilateral filter because it is more efficient
and has a better incorporation of the noise.

The median filter does not preserve edges as well as the bilateral filter and tends to produce
round corners, but being more computationally efficient, could be utilized with “in-motion”
use cases (e.g., obstacle detection on mobile robots).

Learn more here

1.3. Parameters 11

O3R

Temporal Filter

Variable name Short description Min/max values

enableTemporalFilter Enables the filter true (default)/false

The temporal filter mitigates distance noise by integrating pixel information over multiple
frames. There is no strict limit for the number of frames. Instead, an automatic resetting
approach is applied to the pixels.

Although the O3R temporal filter can be used on “in-motion” use cases, it is best suited for
static scenes.

Learn more here

Mixed Pixel Filtering

Vari-
able
name

Short description Min/max values

mixed-
Pix-
elFil-
ter-
Mode

Filtering mode (angle or distance) 0: disable the filter, 1 (default): mixed
pixel filter is on and uses an angle thresh-
old, 2: mixed pixel filter is on and uses an
adaptive delta distance threshold

mixed-
Pix-
elThresh-
ol-
dRad

Threshold given in [rad] for themini-
mum angle between the surface tan-
gent and the view vector (used if
mixedPixelFilterMode=1).

0 to 1.57079. (default 0.15)

Mixed pixels (or “flying pixels”) are pixels that fall partially on a foreground object and par-
tially on an object in the background. Because the physics of indirect ToF do not allow the
imager to distinguish partial pixel measurements, the full pixel result is a weighted average
distance measurement between the two targets. When viewing the point cloud, these pixels
appear “floating”, or not corresponding to any object. The mixed pixel filter removes the
mixed pixels from the image.

When to change the default:Mixed pixels fall on the edges of targets. Use cases, such as
negative obstacle detection, could take advantage of the additional information provided by
these mixed pixels, requiring the filter to be disabled.

Learn more here

12 Chapter 1. Everything related to the O3R family

O3R

Symmetry Threshold

Variable
name

Short description Min/max
values

enableDy-
namicSymme-
try

true (de-
fault)/
false

maxSymmetry Defines the maximum allowed asymmetry for a measured
pixel. A pixel with a higher symmetry is discarded.

0 to 1 (de-
fault: 0.4)

The raw modulated signal used to perform the distance measurement is designed to be per-
fectly symmetrical (sent and received). This is true for static applications. If the object is
in motion, however, the symmetry of the reflected signal may be altered, leading to “motion
blur”. This artifact can be mitigated by allowing “less” symmetry in the measurements.

Note: adjusting this filter for faster motion, or allowing less symmetry, will increase
overall distance noise.

Learn more here

Stray light

Variable name Short description Min/max values

enableStraylight Turn stray light correction on/off True (default)/false

Stray light is defined as “unwanted light from the active illumination reaching the imager”.
This is typically experienced when there is a very bright object in the FoV. The resulting
amplitude of pixels landing on the bright object affect the neighboring “darker” pixels. This
is seen as a “halo” around the bright object. This “halo” can affect the measurement of
neighboring pixels (even providing a value for pixels where none previously existed). The
stray light filter mitigates this physics artifact.

Learn more here

1.3.2 Acquisition settings

Modes

Description

The O3R has the specificity to provide several measurement ranges. A distance measurement
is computed only for a subspace of the scene. Elements fully outside of the range are not taken
into account and have no impact on the measurement (for instance by causing artifacts like
stray-light or Multi-Path Interference(coming soon)).

Note: Objects very close to the beginning or end of the measurement range can
still have an impact on the measurement.

1.3. Parameters 13

O3R

By default, the O3R provides two measurement ranges: two meters and four meters. These
ranges use different frequencies to perform the Time-of-Flight (ToF) measurement and there-
fore show different characteristics, especially in how they are affected by artifacts. The
four-meter mode shows higher noise levels than the two-meter mode (around twice as much).

Example

Let’s look at a simple scene: three boxes are placed in front of
the camera, one, two, and three meters away (see image below).

The table below shows the computed distance measurement in the distance image view and
the point cloud view with the two modes available by default:

14 Chapter 1. Everything related to the O3R family

O3R

Mode Distance Image Point Cloud

2 m

4 m

The third box, which is three meters away from the camera, is outside of the measurement
range when using the two-meter mode; however it is visible when using the four-meter mode.

Note: Using the offset parameter in combination with the mode is interesting and
allows for a lot of flexibility in using the coded modulation ToF technology. We
encourage you to investigate strategies using multiple modes in combination with
offsets (see our application note (coming soon) on the topic).

Related Topics

• Offset

Offset

Description

The offset parameter shifts the beginning of the measurement range in space. For instance,
when using the 2m mode with an offset of 1m, the O3R will compute distance data for a range
between 1 and 3 m from the camera.

Using the offset can allow you to collect distance measurements past the measurement range
set by the mode while taking advantage of the robust point cloud the O3R provides and the
specificities of each mode.

1.3. Parameters 15

O3R

The offset can be set at negative values, which brings the end of the measurement range
closer to the camera. This can be useful for mitigating MPI artifacts (coming soon)), for
instance, or for avoiding artifacts caused by highly reflective objects (see stray-light artifacts),
by removing the cause of the artifact from the FoV.

Example

Let’s look at the following scene. Three boxes are positioned in
front of the camera at about one, two, and three meters away.

We are using the 2m mode, with all the other settings as default. The table below shows the
point cloud for multiple values of the offset.

16 Chapter 1. Everything related to the O3R family

O3R

Offset (me-
ters)

Point Cloud

-0.5

0

1.5

2.5

1.3. Parameters 17

O3R

Note: In the last image where the offset is set to 2.5m, we can see that the noise
is higher than in the other images. This is due to the distance to the camera, with
which the noise increases, and to the fact that the most robust measurement is
in the middle of the range, which is from around 3 to 4 m in the case of the last
example. The ground in front of the box is outside of the robustness area.

Acquisition parameters change the basic setting on how the camera heads are taking images.

1.3.3 Filters

Filtering Process

This document details the filtering process applied to the O3R ToF data to produce distance
measurements. Each filter listed below can be enabled, disabled or fine-tuned to better fit
your application. Please read the detailed documentation for each filter (linked below) for
more details.

18 Chapter 1. Everything related to the O3R family

O3R

1.3. Parameters 19

O3R

Related Topics

• Find an overview of the filters here.

• Find a description of the available images here.

Maximum Distance Noise

Abstract

The O3R software estimates distance noise per pixel as well as the distance information per
pixel. This distance noise parameter is an estimation of the standard deviation of the radial
distance measurement, given in meters. It is based on a noise model built upon the acquired
time of flight (ToF) measurements of a single frame. Pixels with a noise value above the
threshold maxDistNoise are invalidated.

Description

The O3R camera and software use the ifm ToF technology to measure the distance of objects
per pixel. The result are a distance image as and a distance noise image. The distance noise
deduction can be interpreted as a standard deviation of the distance measurement in a metric
scale. The noise level is dependent on the received signal’s amplitude (lower amplitudemeans
greater noise) and on the ambient light level (high ambient light level, especially sunlight, can
lead to high noise level).

The distance noise image is processed in the same algorithmic pipeline as the distance image.
Any filter applied to the distance image is applied to the distance noise image as well. For
example, if filters are activated in the spatial domain (see the bilateral filter), then they also
filter the distance noise image such that the adapted noise image reflects the lowered noise
due to lateral filtering.

The parameter maxDistNoise is used to invalidate pixels with high noise levels. Higher
maxDistNoise values will allow noisier pixels to be valid pixels in the point cloud. The max-
imum allowed value is 1 meter, although we do not recommend using such a high value be-
cause the resulting distance measurement will be highly inaccurate in the noisy areas. Low
maxDistNoise values will result in more noisy pixels being marked as invalid. Values lower
than 0.01 meters should always be validated against worst-case expected object and ambient
light levels.

The minimum allowed maxDistNoise value is 0.00 meters. This will switch off the valida-
tion process based on the estimated distance noise image. The distance noise image is still
computed and available to the user.

We suggest you start your experiments with the default values and assess the point cloud
quality for your specific use case. The current default value is set to 0.02 meters, which
allows for a robust point cloud with negligible noise. For applications where a rich point
cloud (i.e., a cloud with more valid pixels) is preferred over accuracy, increasing the noise
threshold can be a good idea.

20 Chapter 1. Everything related to the O3R family

O3R

Example

The following table shows measurements for the same scene with two different distance noise
threshold values. The scene consists of a box positioned 1 meter away from the camera,
outside in full sunlight. The amount of noise due to the ambient light is high, but it is apparent
that we can still get distance values for many pixels by increasing the noise threshold.

Note: For demonstration purposes, we disabled the temporal filter in these images.

Noise
thresh-
old
[m]

Distance noise image Point cloud

0.01

0.07

Note: The distance noise image is the same for both noise threshold values. The
difference is viewed in the point cloud, where the noise filtering discards more or
fewer pixels.

Related topics

• Bilateral filter (see also the median filter)

• Temporal filter

• Minimum amplitude

1.3. Parameters 21

O3R

Minimum Amplitude

Abstract

The Minimum amplitude (diParam.minAmplitude) parameter invalidates pixels where the
amplitude (reflected light) drops below the minimum threshold.

Description

For each pixel, the amplitude value represents how much light was received by the imager.
The minimum amplitude parameter provides a threshold that defines when the system should
discard low amplitude pixels. The images below show the amplitude image and the point cloud
for a scene containing black totes, which are made out of a dark plastic and reflect very little
light. Part of the point cloud is missing where the amplitude is below the threshold.

Amplitude image Point cloud

Now, let’s see what happens when we change this threshold value. In the table below, we
display the same scene measured with different amplitude thresholds. With a value of zero,
we can compute the point cloud for the very dark areas. When we increase the threshold to
50, a large part of the point cloud is lost.

22 Chapter 1. Everything related to the O3R family

O3R

Minimum am-
plitude

Point cloud

0

20

50

1.3. Parameters 23

O3R

In certain cases, such as when black objects are in the field-of-view, changing the default value
from 20 to zero can be beneficial because more pixels are valid, leading to a more complete
point cloud. Generally speaking, lowering the amplitude leads to more ambient noise and
less accuracy in the distance measurement. In this case, we encourage you to test the filters
available with the O3R to mitigate the noise from black objects measurements.

Note: black objects in the visible spectrum are not necessarily black in the near
infrared range.

Note: The minimum amplitude threshold is applied to the non-normalized ampli-
tude image. The numerical value of the normalized amplitude image might not cor-
respond to expected values with the set threshold. The normalization factor used
in our algorithm is accessible as part of the PCIC output and called ampNormaliza-
tionFactor.

Related topics

The minimum amplitude parameter is related to the maximum distance noise parameter: a
low amplitude value with a high distance noise value ensures that more pixels are valid but
will allow for a noisier measurement, requiring some filtering, for instance with the temporal
filter. See the following:

• Distance noise

• Temporal filter

• Bilateral filter

Minimum Reflectivity

Description

Reflectivity in a near infrared (NIR) spectrum is a characteristic of the material of the object
reflecting the light. It depends on its surface material, and the geometric configuration of the
scene. The minimum reflectivity (minReflectivity) filter invalidates pixels with low amounts
of received light (i.e., pixels on objects with a reflectivity below the minimum threshold). The
reflectivity is computed from the distance and amplitude images. It can be used to discard
unwanted pixels in scenes where an object’s reflectivity is known in advance. It can also
be used to identify highly reflective objects in a scene; a threshold of 200 would invalidate
everything but the retro-reflectors.

Example

In the image below, we show objects with their measured reflectivity. In this case
the reflectivity depends on the material of the object only because their surfaces
are seen under the same angle relative to the surface’s normal. The estimated re-
flectivity might vary for the same object seen under varying angles to surfaces nor-
mals. Note that this pertains to reflectivity in the NIR spectrum. Some objects
might show a higher or lower reflectivity than expected in the visible spectrum.

24 Chapter 1. Everything related to the O3R family

O3R

The corresponding reflectivity image is nothing more than a gray-scale image. Darker shades
represent lower reflectivity values:

In the table below, we show the computed distance image for the default settings of the O3R
heads with different values for the reflectivity threshold minReflectivity:

1.3. Parameters 25

O3R

Reflectivity Distance image

0

5

10

26 Chapter 1. Everything related to the O3R family

O3R

Note: In the first image, some pixels are missing from the side of the object. This
area of the object does not reflect enough light, even when a low reflectivity thresh-
old is allowed.

Related topics

• Minimum amplitude

• Available images

Adaptive noise bilateral filter

Abstract

The O3R software allows for filtering the distance measurement in the spatial domain. The
spatial domain of a 3D image can be thought of as the local neighborhood of a pixel, that is,
the neighboring pixels X-, Y-, and Z-coordinates. Radial distance information for a pixel is
combined with its neighbors’ information to form a new distance image with reduced noise.

The bilateral filter is the preferred spatial filter and is enabled by default. It can be ap-
plied with different filter mask sizes, which can be set via the parameter anfFilterSizeDiv2.
Larger filter mask sizes allow for stronger noise reduction.

Description

This distance bilateral filter is, in its concept, highly similar to a bilateral filter applied to
RGB 2D images. A bilateral filter is a nonlinear edge-preserving smoothing filter. The idea
is to replace the pixel value with a weighted average of the information from nearby pixels.
The weighting is a combination of the spatial kernel and the range kernel. The O3R imple-
mentation additionally incorporates the distance noise estimation for calculating the filter
weights.

Note: The weighted average is computed by convolution over the spatial domain.
The convolution of the original image and the filter mask returns an image reduced
by half the filter size at each image border; that is, with a filter mask of 7x7 pixels,
the image is stripped of 7 pixels vertically and horizontally (these pixels are marked
as invalid).

The bilateral filter is controlled by the parameter anfFilterSizeDiv2 (turn it off with anf-
FilterSizeDiv2 = 0). anfFilterSizeDiv2 = 3 sets the filter mask size to a local 7x7 pixel
neighborhood.

Note: The bilateral filter is preferred over the median filter because it preserves
edge and corner information better (the median filter tends to round corners). It
is also possible to apply the bilateral filter with larger filter masks (up to 7x7 pixel
masks) compared to 5x5 pixel masks for the median filter. The size of the mask de-
fines how many neighboring pixels are considered when computing a pixel’s value.

Invalid pixels will be ignored during the filtering process and therefore have no impact on the
surrounding pixels. Invalid pixels will remain invalid after the filtering.

1.3. Parameters 27

https://en.wikipedia.org/wiki/Bilateral_filter
https://en.wikipedia.org/wiki/Bilateral_filter

O3R

Example

The following pictures give an overview of the capabilities of spatial filtering with the bilateral
filter for different filter mask sizes. All other filters (temporal and median) are deactivated for
the purpose of illustrating the bilateral filter’s effect. The maximum allowed distance noise is
set at 0.2 m for all images. Note that for maximum distance noise values below 0.2 m the point
cloud becomes extremely sparse for smaller filter mask sizes (not shown in the following).

The scene shows a view of our lab, containing various typical objects including a black tote
in the center of the room. It is a static scene, which makes it simpler to illustrate the filter’s
effect, but these settings (active bilateral filter and inactive temporal filter) are typical for
scenes involving motion. Have a look specifically at the distance noise images in the following
table. We can see that the distance noise greatly reduces as the filter mask size increases
(the color red denotes negligible noise, whereas blue represents noise of around 1 cm and
above).

28 Chapter 1. Everything related to the O3R family

O3R

Bilat-
eral
filter
mask
size

Point cloud Distance (top left), amplitude (top
right), distance noise (bottom left),
and reflectivity images (bottom right)

0 (filter
dis-
abled)

1 (3x3
mask
size)

2 (5x5
mask
size)

3 (7x7
mask
size)

1.3. Parameters 29

O3R

Note: distance information for the black tote in the middle of the image remains
extremely hard to compute even with a strong lateral filtering. For better handling
of dark objects, have a look at the minimum amplitude, maximum distance noise,
and temporal filter).

Scenes involving motion

The spatial filtering can be performed in scenes where motion is present: only the parts of
the images that are not affected by movement will be filtered. This differentiation is possi-
ble because the detection of motion is performed before the spatial filter in the processing
pipeline. It is perfectly fine and encouraged to use large filter mask sizes.

Note: this is not true for temporal filtering, which is not best suited to in-motion
cases.

Related topics

• Median filter

• Temporal filter

(Spatial) Median Filter

Abstract

The O3R software supports two spatial filters for improving the distance measurements: the
median filter and the bilateral filter.We recommend using the bilateral filter in most
cases instead of the median filter because the median filter can have undesirable
side effects.

Description

The median filter is conceptually very similar to a median filter applied to RGB 2D images. A
median filter is a nonlinear, edge-preserving smoothing filter. It can be thought of as a filter
that replaces the value per pixel with themedian value of neighboring pixels. The computation
is achieved by sliding the filter mask in the spatial domain until it covers the whole image. This
filtering technique is robust (i.e., not affected by outliers) and reduces noise while keeping
edge information intact. The median filter is applied to the distance image. The distance
noise is lowered to heuristically reflect the new noise in the distance image.

The median filter is controlled by the parameter medianSizeDiv2; turn it off with median-
SizeDiv2 = 0. medianSizeDiv2 = 1 sets the filter mask size to a size of 3 x 3 pixels. medi-
anSizeDiv2 = 2 is the highest allowed value. It represents a filter mask size of 5 x 5 pixels.
Using larger filter mask sizes combines more pixels’ distance measurements into the filterer
value. The filter’ effect will be stronger, resulting in a smoother image.

Note: Invalid pixels are ignored during the filtering process and therefore have no
impact on their surrounding pixels. Invalid pixels remain invalid after the filtering.

30 Chapter 1. Everything related to the O3R family

https://en.wikipedia.org/wiki/Median_filter

O3R

Example

Below are images of the same scene with different settings for the median filter. Look more
specifically at the distance noise image that shows the amount of noise in the scene—the
larger the filter mask size, the lower the noise level. The color red corresponds to negligible
noise levels and blue to noise around 1 cm and above. See the bilateral filter example for
comparison with the same scene.

Filter
mask size
median-
SizeDiv2

Point cloud Distance (top left), amplitude (top
right), distance noise (bottom left),
and reflectivity (bottom right) im-
ages

0 (filter
deacti-
vated)

1 (3 x 3
mask size)

2 (5 x 5
mask size)

1.3. Parameters 31

O3R

Bilateral vs. median filtering

Disadvantages of the median filter

Themedian filter is not our spatial filter of choice for two reasons: it does not preserve corners
of objects as well as the bilateral filter, and it uses a heuristic method for dealing with the
distance noise image. Moreover, the median filter can introduce a bias in the distance image
(locally) in some cases, an effect that is not present in the bilateral filter. We recommend
using the bilateral filter in most cases.

Bilateral and median filters combined

A combination of both spatial filters is rarely required, and we recommend increasing the
filter mask size as a first step. However, if the filtering is not strong enough, then one can
use both the bilateral and median filters at the same time. This will further reduce local noise
levels but can result in bias in larger noise patterns.

To give you an idea, the image below shows the effect of combined bilateral
(anfFilterSizeDiv2=3) and median (medianFilterSizeDiv2=2) filtering for the example

scene.

32 Chapter 1. Everything related to the O3R family

O3R

Related topics

• Bilateral filter

• Temporal filter

Temporal Filter

Abstract

The temporal filter filters the data over—you guessed it—time. Each measurement per pixel
over several frames is used to produce the filtered value, reducing (distance) noise per pixel.
This filter is best suited for static scenes because the objects in the scene are in the same
relative positions over multiple frames.

Description

The temporal filter affects all images—distance image, point cloud, and so on—by reducing
the noise. The filtered value for each pixel at a certain time is computed by integrating
information over multiple frames. There is no strict limit on how many frames are taken into
account for filtering; instead, the filter is automatically reset when necessary, such as when
motion is detected.

Examples

Reducing Noise

The primary role of the temporal filter is to reduce noise. The following images show a be-
fore/after of a scene measured without (left images) and with (right images) the temporal
filter. The two images in the second row represent the distance noise, with the color black
representing a negligible amount of noise and blue a noise of around 2 cm. We can see that
the noise is greatly reduced by the use of the temporal filter. It is even more visible “live”.
Try it!

1.3. Parameters 33

O3R

Recovering Lost Pixels

Because the filter estimates pixel values over time, a positive side effect is that it gathers
more data overall. Certain pixels might reflect too little light because of their distance to
the camera or their material, which causes them to be discarded during the filtering process
(by the spatial filter, for instance, or the minimum amplitude filter). However, distance data
for these pixels can potentially be computed by collecting light over multiple frames. In the
following two images, we compare the same scene without (left image) and with (right image)
the filter. We can see that a section of the floor (around 10 cm) at the end of the range (the
point at which the pixels return the least amount of light) is not visible without the temporal
filter. Note that this section of the floor could also possibly be recovered using the distance
noise with higher values for the distance noise threshold, with the disadvantage of increasing
the overall noise.

34 Chapter 1. Everything related to the O3R family

O3R

| | |

Related settings

• Distance noise

• Minimum amplitude

• Spatial filter

Mixed Pixel Filter

Abstract

We call mixed pixels pixels resulting from a mixed signal from foreground and background
planes (typically, the pixel “lands” partially on an object and partially on its background).
Such pixels don’t represent the distance measurement to either object and lie somewhere
in between (they appear to be flying, and we sometimes refer to them as flying pixels).
The mixed-pixel filter invalidates these pixels. The mixedPixelFilterMode setting defines
whether this filter is activated and which validation methods is used. mixedPixelFilterMode
= 1 switches to angle validation check (adjust it with mixedPixelThresholdRad). mixedPix-
elFilterMode = 2 switches to distance based validation check (this mode is inherited from
previous algorithm versions and will most likely be deprecated in the future). mixedPix-
elFilterMode = 0 switches the filter off completely.

We recommend either disabling the filter (more precision on objects’ edges) or us-
ing the angle based validation method (mixedPixelFilterMode = 1) to remove pixels
between objects and their backgrounds.

1.3. Parameters 35

O3R

Description

The mixedPixelFilterMode controls two different methods for invalidation mixed pixels.

Angle based validation method

The angle based mixed pixel filtering (mixedPixelFilterMode = 1) is based on the idea of
estimating, for each pixel, the angle between the optical and an approximate tangent plane
on the object (at this exact pixel coordinate). If the angle difference is larger than the allowed
angle threshold, the pixel is invalidated.The angle threshold of this mode is controlled by the
parameter mixedPixelThresholdRad (angle in radians).

Distance based validation method (will be deprecated)

The second version of the mixed pixel (mixedPixelFilterMode = 2) filter is centered around
the idea of comparing distances in the local neighborhood of a pixel. The distance of the
pixel is compared in horizontal and vertical direction against its neighboring pixels’ distance
values. If the distance differences are outside a threshold (set internally), the pixel is invali-
dated.

Examples

Different angle threshold values

To show the impact of adjusting the mixed pixel filter with the mixedPixelThresholdRad, we
show a scene where two boxes are placed in front of the camera, at around one and two
meters. The table below shows the distance image and the point cloud with the filter inactive
and filter in the angle mode with different angle thresholds:

Note: settings mixedPixelThresholdRad = 0 is equivalent to turning the filter off.

36 Chapter 1. Everything related to the O3R family

O3R

Value of mixed-
PixelThreshol-
dRad

Distance image Point cloud

0 (equivalent to
mixedPixelFil-
terMode = 0)

0.15 (default)

0.3

0.5

1.3. Parameters 37

O3R

We can see that using higher values for the mixedPixelThresholdRad invalidates more pixels.
We typically recommend deactivating the filter or using small values for the threshold.

Symmetry Threshold

Abstract

The symmetry threshold maxSymmetry is used for filtering motion artifacts. Increasing the
threshold value leads tomore valid pixels aroundmoving objects but also increases the chance
of computing incorrect distance measurements for some pixels. Decreasing the threshold will
result in invalidation of more pixels because of their estimated symmetry value. In cases with
a high ambient noise level, the dynamic symmetry filter should be enabled (with the parameter
enableDynamicSymmetry) to ensure pixels are not invalidated due to ambient noise.

Description

The O3R camera heads use the ifm ToF (Time of Flight) technology for measuring the distance
to objects. To calculate one single point cloud image, the system takes several independent
image frames. These images are correlated over time. This correlation is represented as
symmetry value. It can be thought of as the four modulated signals used for performing the
raw measurement, being more or less symmetrical to one another.

For low symmetry threshold values, only pixels for which the correlation images are highly
symmetrical (i.e., with no or few motion artifacts) are valid. Because of inherent noise, a
perfect symmetry is never possible even for static scenes. Increasing the symmetry threshold
validates pixels with higher symmetry values, including noisy pixels and potential motion
artifacts.

In a high-noise environment, the sensor noise might be propagated to the symmetry image
and most of the pixels invalidated because of the symmetry threshold. In these cases, the
dynamic symmetry should be activated. The dynamic symmetry ensures that the symmetry
threshold of a pixel is at least high enough to prevent invalidation due to sensor noise. It can
be thought of as differentiating motion artifacts from ambient noise in the scene.

If the dynamic symmetry is enabled, each pixel gets an individual symmetry value, which is
either the maxSymmetry setting or the expected symmetry (computed internally) due to noise,
whichever one is greater.

Example

COMING SOON…

Disclaimer: As a vendor of industrial equipment, we always try to mitigate physics artifacts
to the best of our abilities. The default settings are chosen with this goal in mind: providing
the best experience for most cases. However, the variety of scenes that mobile robots and
other applications can encounter makes a “one-fits-all” configuration impossible. With this
in mind, we present the outliers in our documentation, challenging but common cases that
might require fine-tuning of the camera configuration.

38 Chapter 1. Everything related to the O3R family

O3R

Stray Light Filter

Scenes including highly reflective objects are common in robotics and industrial use cases.
These scenes can present challenges because reflectors introduce an artifact known in optical
systems as stray light. In this document, we focus on this phenomenon and present the stray
light filter available with the O3R. We analyze some challenging cases and give hints on how
to handle specific applications.

NOTE: the scenes presented here are recreated with the intention of highlighting
the specific challenges of mobile robots environments here in our office. We detail
our experience of trying to “fool” the system, but we are well aware of the limitations
of this approach. We always want to hear from firsthand experience, and we gladly
welcome your feedback.

Abstract

Stray light is a phenomenon that exists in any optical system where light reflected from very
bright objects is bouncing around in the lens, impacting the measurement. Two main effects
of stray light are noticed in 3D point clouds: the creation of a halo around the bright ob-
jects, and the apparition of “ghost” pixels in the close range. To mitigate these artifacts, a
stray light filter is available (turn it on with diParam.enableStrayLight). This filter can be
fine-tuned to be more or less conservative, depending on whether the application requires
high accuracy or a rich point cloud (adjust diParam.excessiveCorrectionThreshDist and
diParam.excessiveCorrectionThreshAmp).

Table of Contents:

1. The stray light phenomenon + filter intro

1. Halo: before/after

2. Ghost pixels: before/after

2. Fine-tuning of the stray light

3. Conclusion

The stray light phenomenon

Stray light designates any unwanted light reaching the optical lens of the camera. This light
can be reflected light from an object within the field of view or emitted by an object outside the
FoV. Stray light exists in any non-perfect optical systems, where an excessive amount of light is
reflected on the internal parts of the system (within the lens or other camera components) and
eventually reaches a pixel of the imager, interfering with the measurement. Common objects
found in warehouses and other industrial environments, like reflective cones or safety vests,
are sources of stray light interference.

A typical effect of stray light is to cause a halo of pixels around the reflective object, affecting
the measurement of low-signal pixels in the area. But stray light can also affect pixels not in
the direct vicinity of the reflector, creating ghosts pixels, typically in the close range, which
can make the scene hard to analyze.

Let’s look at some concrete examples of stray light artifacts. For the purpose of demonstra-
tion, we have disabled the built-in O3R stray light filter.

1.3. Parameters 39

O3R

First case: The stray light halo

A circulation cone with a reflective band is positioned 1 m in front of the cam-
era. We can observe a stray light halo around the cone: pixels are measured
where there should not be anything (the background is out of range in this case).

A cardboard box is positioned next to the cone, at the same distance from the cam-
era. The halo is still there and affecting part of the background pixels. However, the
measurement of the actual box is accurate and is not affected by the reflective object
next to it. Stray light affects the low-signal pixels in the scene more strongly, and, in
this case, it does not affect the measurement of the box, which reflects enough light.

40 Chapter 1. Everything related to the O3R family

O3R

Handling stray light halos

The O3R camera comes with a built-in stray light filter that mitigates stray light artifacts. This
filter improves the measurements by correcting the undesired effects of the optical system.
Additionally, pixels that are overly affected by stray light are filtered according to set distance
and amplitude thresholds (the default distance threshold is set to 8 cm: if stray light affects
a pixel measurement more than 8 cm, this pixel will be invalidated).

Let’s look at the first scene again, but this time with the filter activated.
We can see that the halo has been greatly reduced around the reflective
part of the cone. A similar result is achieved with the box in the scene.

1.3. Parameters 41

O3R

The stray light filter makes it possible to reduce mismeasured pixels in the vicinity of the
reflector.

42 Chapter 1. Everything related to the O3R family

O3R

Second case: “Ghost” pixels

Let’s look at a second case of stray light. A reflective cone is placed 1 m in front of the
camera. The background is a white wall, at around 2 m. The stray light filter is deactivated.

We can see (highlighted in the red circle) that some pixels are measured that do not exist in
the real scene (there is no object there). This is a second effect of stray light: nonexistent
pixels appear in the close range. This could create false positive measurements, for instance
when performing obstacle detection and trigger interruption of service.

1.3. Parameters 43

O3R

Handling “ghost” pixels

In the second scene, “ghost” pixels appeared in the close range
due to stray light. The filter also mitigates this artifact:

The side effect of this is the removal of additional pixels on the scene, as we can see in the floor
area. The O3R stray light filter invalidates pixels that are flagged as over-affected by the stray
light: pixels whose distance or amplitude measurement is affected over the set threshold. We
will see in the next section how to tune this distance threshold.

Fine tuning the stray light filter

The default settings of the filter are chosen to properly handle most cases of stray light, but
some scenes might require fine-tuning it. We focus here on obstacle detection cases that
prove challenging with the default settings of the filter.

Obstacle detection

In cases where obstacle detection is the main application, one can accept that stray light
affects the scene such that some pixels will be measured as much as 10 cm off their real
position, as long as the obstacle is detected and false negatives are avoided. Let’s focus on
scenes where the sources of stray light are limited (a single reflector or smaller reflective
surfaces).

The interesting setting in this case is the excessiveCorrectionThreshDist. This setting
defines the distance threshold above which a pixel affected by stray light will be discarded.

Let’s look at a scene with and without stray light. A box (the obstacle) is placed on the floor,
and we measure the distance to it.

44 Chapter 1. Everything related to the O3R family

O3R

Scene without reflector:

We choose a reference pixel on the side of the box. The distance measured for this pixel is
1.527 m.

1.3. Parameters 45

O3R

Scene with reflector:

For the exact same scene, we add a reflector to the side of the field of view.

We can see that a whole side of the box disappears. This is due to the stray light that affects
the scene: the pixels are marked as invalid by the stray light filter because of their distance
measurement being affected.

Adjusting the distance threshold

Let’s adjust the distance threshold setting, excessiveCorrection-
ThreshDist. Its default value is 0.08 m, which means that any pixel af-
fected more than around 8 cm will be discarded. Let’s set it to 0.2 m.

46 Chapter 1. Everything related to the O3R family

O3R

We can see that we are able to recover most of the pixels from the side of the box. However,
the distance measured for the same pixel is now 1.590 m, when our reference measurement
is 1.527 m. The side of the box is measured 6.3 cm off its actual position. This is acceptable
because the robot will be able to drive along the reflector and still detect the presence of an
obstacle.

Note: there are multiple filters activated by default with the O3R, which means
pixels might be discarded due to a combination of multiple filters. This explains
why the pixel was discarded while being only 6.3 cm off, and not 8 cm, as expected
with the correction threshold we set.

Warning: Relaxing the distance threshold value affects which stray light pixels are discarded
by the filter. By doing so, you risk allowing some ghost pixels in the scene that might create
false positive obstacles.

Multiple reflectors in the scene

Scenes involving multiple reflectors can have pretty dramatic stray light artifacts. In these
cases, getting rid of all the stray light ghost pixels might require you to strengthen the filter.
Let’s analyze a specific example and see how it can be handled.

The scene is set up with two reflectors along the expected path of the robot, and the left side
is actually a glass wall. We imagine that the robot is moving forward, and, therefore, it must
detect the floor and potential obstacles.

Let’s have a look at the scene with the stray light filter deactivated. Pretty dramatic, right?
The two reflectors create so much stray light that the whole path of the robot is blocked by
ghost pixels (see the highlighted areas in red).

1.3. Parameters 47

O3R

48 Chapter 1. Everything related to the O3R family

O3R

Now let’s reactivate the filter and seewhat we get.
The ghost pixels almost completely disappeared, and the path forward is mostly clear. But
we can still see remaining ghost pixels in the close range above the robot (denoted by the red
circle). A measurement indicates that these pixels are 0.8 m away from the camera, which
could be in the path of the robot if it or its payload reaches this height. The robot would
therefore be blocked from moving forward by an obstacle detection algorithm, even though
the path is clear.

We can once more adjust the stray light filter to ensure we filter away all the
remaining ghost pixels. To do so, we can use the distance threshold, as pre-
sented earlier. This time, we are trying to remove extra pixels, so we are going
to lower the distance threshold (we set it to 0.05 m). We can see that all the
ghost pixels are now gone, and the robot can proceed to its route, obstacle free.

1.3. Parameters 49

O3R

NOTE: This scene could also be handled with the amplitude threshold (diParam.
excessiveCorrectionThreshAmp). This threshold follows the same concept as the
distance threshold, invalidating pixels with an amplitude below the set value. Gen-
erally, setting the distance threshold suffices, but we encourage you to play with
both to select the best configuration possible for your use case.

Conclusion

As we saw with the examples detailed above, there is no “one-size-fits-all” configuration for
handling stray light in robotics applications. Proper configuration needs to be selected after
reviewing the scenes the robot is expected to encounter. The number and position of highly
reflective surfaces that will enter the field of view at a certain time affects the necessary
strength of the filter. Multiple configurations can be stored on board the O3R, and we en-
courage bringing intelligence to the use of the platform to adapt the cameras’ configurations
to the scene where necessary. In scenes where a high accuracy of the ToF measurement is
expected, we recommend avoiding placing reflectors in the scene or placing them reasonably
far away from the navigation path of the robot.

The O3R provides several filters which can be used to handle specific ToF artifacts.

This section contains information and a description about the O3R parameters and their ef-
fect(s).

1.4 Docker on O3R

1.4.1 Build and run a docker container for the O3R platform

In this document we guide you through building a container from scratch. We start by building
a small container. This container will increase in size and complexity the further we go. We
will use a python base image and install the ifm3d (ifm3dpy) library.

If youwant to use any of our available docker images or directly build on top of our Dockerfiles,
you can jump directly to this section or check out the list of docker images officially supported
by ifm coming soon.

Note that the O3R VPU (Video Processing Unit) is based on an NVIDIA Jetson system (TX2),
which is arm64/aarch64 based. Building containers without the right base image will not run
on the VPU, an arm64/aarch64 base image is needed. Please read carefully the instructions
at the Nvidia -> GitHub repository for set-up instruction. For running an aarch64 container
on a x86-64 host the section Running or building a container on x86 is highly recommended.

Contents

• Build and run a docker container for the O3R platform

– A basic container

∗ Build the container

· Troubleshooting: proxies

∗ Run a container

50 Chapter 1. Everything related to the O3R family

https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson
https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson#enabling-jetson-containers-on-an-x86-workstation-using-qemu

O3R

∗ Save a container

– Load and start a container

– Add features to the container

– Install ifm3d in the container

– Building on top of the ifm base image

A basic container

Every Docker container image is built by Docker using a Dockerfile. A docker file contains all
the necessary information for building a container image. Most of the Dockerfiles are starting
with a base image that is retrieved from the Docker Hub during the build process. Docker will
automatically fetch the image for the architecture hosting the build (arm64/aarch64). When
building a container for an architecture other than the hosts’, the destination architecture
needs to be specified in the Dockerfile. The Dockerfile is just a text file named Dockerfile
without any file extension (watch out, it is case sensitive). You can use docker build [path
to Dockerfile] to start the build process.

Our first container will use arm64v8/python:3.9.6-slim-buster as the base image. Let’s
build the first container with that base image.

Dockerfile:

#arm64v8 is the pre-requisite for running the container on the VPU.

FROM arm64v8/python:3.9.6-slim-buster

Build the container

Building: To build a container use docker build [path/to/Dockerfile]. If an image tag
(name) is needed, you can specify it within the docker build command.

Assuming the Dockerfile is located within the same directory:

$ docker build . -t ifm3d

Note: For further information about docker build refer to the official docker doc-
umentation

Build process:

$ docker build . -t ifm3d

Sending build context to Docker daemon 2.048kB

Step 1/1 : FROM arm64v8/python:3.9.6-slim-buster

---> 4770e646d0be

Successfully built 4770e646d0be

Successfully tagged ifm3d:latest

If the build was successful, you should be able to use docker image ls to display all built
images:

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

ifm3d latest 4770e646d0be 5 weeks ago 108MB

1.4. Docker on O3R 51

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

O3R

Troubleshooting: proxies

Depending on the network infrastructure, docker might need the proxy information for build-
ing the container. You can input them directly when running the command:

#$HTTP_PROXY & $HTTPS_PROXY are variables containing the proxy address. E.g.: HTTPS_

→˓PROXY=https//[PROXY ADDRESS]

$ docker image build --build-arg http_proxy=$HTTP_PROXY --build-arg https_proxy=

→˓$HTTPS_PROXY -t jupyter .

You can also define the proxies in the config.json file. You should find the file within the
home directory of the user executing docker, in a directory called .docker, which contains
config.json. E.g. ~/.docker/config.json. If not available, create and save a config.json
file containing the following:

{

"proxies":

{

"default":

{

"httpProxy": "http://192.168.1.12:3128",

"httpsProxy": "http://192.168.1.12:3128",

"noProxy": "*.test.example.com,.example2.com,127.0.0.0/8"

}

}

}

Run a container

Note: To run a container built for another chip architecture than the host system,
you need to use qemu to handle the virtualization. For further information see:

• Docker multi-CPU architecture

• NVIDIA container runtime using qemu

To run the container, we use docker run. We can specify the run command through several
arguments: we want to start the container interactively (-it) and with a bash interface (/
bin/bash), so we can play around inside the container.

$ docker run -it ifm3d /bin/bash

WARNING: The requested image’s platform (linux/arm64) does not match the detected␣

→˓host platform (linux/amd64) and no specific platform was requested

root@ee24eff3c797:/#

Note: For further information about docker run, refer to the official documentation

Now we are within the container. The warning tells us that the base image was build for an
arm64/aarch64 architecture, which is different from the architecture of the host (amd64).

We should be able to ask for the python version and start a REPL:

root@ee24eff3c797:/$ python --version

Python 3.9.6

52 Chapter 1. Everything related to the O3R family

https://docs.docker.com/desktop/multi-arch/
https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson#enabling-jetson-containers-on-an-x86-workstation-using-qemu
https://docs.docker.com/engine/reference/run/

O3R

root@ee24eff3c797:/$ python

Python 3.9.6 (default, Jun 29 2021, 19:34:26)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print("hello")

hello

>>>

Save a container

The container is working, let’s save it so we can share it around. Docker already provides us
with the right tool: docker save.

$ docker save ifm3d > ifm3d.tar

Load and start a container

To reload the content of a previously saved image, use:

$ docker load < ifm3d.tar

Start the docker container like this on every other device:

$ docker run ifm3d

Note: The image name might be different than the saved container name. After
docker load, docker will show the name of the loaded image

Add features to the container

Until now, our container is not really useful. Let’s update the container’s kernel, install python
packages and create a user (this will improve security). To do that, we need to improve the
Dockerfile:

Dockerfile:

This Dockerfile is a documentation example and might not build after a copy/paste␣

→˓process

#arm64v8 is the pre-requisite for running the container on the VPU.

FROM arm64v8/python:3.9.6-slim-buster

#Security updates

ARG DEBIAN_FRONTEND=noninteractive

RUN apt-get -y update && apt-get -y upgrade

#Create and activate virtual environment. This is not needed right now, but useful␣

→˓for multistage builds.

RUN python -m venv /opt/venv

ENV PATH="/opt/venv/bin:$PATH"

Your normal pip installation, within the venv. We also update pip.

(continues on next page)

1.4. Docker on O3R 53

O3R

(continued from previous page)

RUN pip install -U pip && pip install numpy

#For security reasons, using a "user" is recommended

RUN useradd --create-home pythonuser

USER pythonuser

#Easier to debug the container if issues are happening

ENV PYTHONFAULTHANDLER=1

Build process:

$ docker build . -t ifm3d

Sending build context to Docker daemon 113.1MB

Step 1/9 : FROM arm64v8/python:3.9.6-slim-buster

---> 4770e646d0be

...

Step 6/9 : RUN pip install -U pip && pip install numpy

---> [Warning] The requested image's platform (linux/arm64) does not match the␣

→˓detected host platform (linux/amd64) and no specific platform was requested

---> Running in bb51c405bbdb

Requirement already satisfied: pip in /opt/venv/lib/python3.9/site-packages (21.1.3)

Collecting pip

Downloading pip-21.2.2-py3-none-any.whl (1.6 MB)

Installing collected packages: pip

Attempting uninstall: pip

Found existing installation: pip 21.1.3

Uninstalling pip-21.1.3:

Successfully uninstalled pip-21.1.3

Successfully installed pip-21.2.2

...

Step 9/9 : ENV PYTHONFAULTHANDLER=1

---> [Warning] The requested image's platform (linux/arm64) does not match the␣

→˓detected host platform (linux/amd64) and no specific platform was requested

---> Running in 4ea430894bc7

Removing intermediate container 4ea430894bc7

---> 14db5d89303f

Successfully built 14db5d89303f

Successfully tagged ifm3d:latest

Note: For easier readability, the build process output was shortened.

The build process contains several layers and intermediate container builds (that we use for
debugging). You can start the container with the typical commands and check if numpy was
installed:

$ docker run -it ifm3d:latest /bin/bash

WARNING: The requested image’s platform (linux/arm64) does not match the detected␣

→˓host platform (linux/amd64) and no specific platform was requested

pythonuser@319eb5ea67e0:/$ pip freeze

numpy==1.21.1

54 Chapter 1. Everything related to the O3R family

O3R

Install ifm3d in the container

ifm3dpy is the python binding for the ifm3D library. You can install it from source (download
it here) or use the docker image provided by ifm which can be used on the VPU and contains
the ifm3d and ifm3dpy libraries.

The Dockerfile could look similar to this:

This Dockerfile is a documentation example and might not be build after a copy/

→˓paste process

FROM ubuntu:20.04 AS build

if defined, we run unit tests when building ifm3d

ARG run_tests

if you are running unit tests against a camera at

a different IP, set it here.

ENV IFM3D_IP 192.168.0.69

ENV DEBIAN_FRONTEND noninteractive

WORKDIR /home/ifm

RUN apt-get update && apt-get -y upgrade

RUN apt-get update && \

apt-get install -y libboost-all-dev \

git \

libcurl4-openssl-dev \

libgtest-dev \

libgoogle-glog-dev \

libxmlrpc-c++8-dev \

libopencv-dev \

libpcl-dev \

libproj-dev \

python3-dev \

python3-pip \

build-essential \

coreutils \

findutils \

cmake \

locales \

ninja-build

RUN apt-get clean

install python

RUN apt-get -y install --no-install-recommends build-essential \

python3-dev

#install(Update) python packages and dependencies separate - improves Docker caching␣

→˓etc.

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt

build pybind11 with cmake - but first clone from the official github repo

RUN git clone --branch v2.3.0 https://github.com/pybind/pybind11.git && \

cd /home/ifm/pybind11 && \

mkdir -p build && \

cd build && \

cmake -DPYBIND11_TEST=OFF .. && \

(continues on next page)

1.4. Docker on O3R 55

https://github.com/ifm/ifm3d
https://github.com/ifm/ifm3d/pkgs/container/ifm3d

O3R

(continued from previous page)

make && \

make install

First clone ifm3d repo via username and personal access token into the container␣

→˓and than build the ifm3d

this build include ifm3d pybind for a python access via pybind11

ARG IFM3D_CLONE_REPO

RUN mkdir src && \

cd src && \

git clone --branch o3r/main ${IFM3D_CLONE_REPO} && \

cd ifm3d && \

echo "Building from current branch" && \

mkdir build && \

cd build && \

cmake -GNinja -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_MODULE_OPENCV=ON -DBUILD_MODULE_

→˓PCICCLIENT=ON -DBUILD_MODULE_PYBIND11=ON -DPYTHON_EXECUTABLE=/usr/bin/python3 .. &&␣

→˓\

ninja && \

ninja package && \

ninja repackage

RUN ls -1 /home/ifm/src/ifm3d/build/*.deb | grep -iv 'unspecified' | xargs dpkg -i

multistage to reduce image size, hide secrets and add ifm user

FROM ubuntu:20.04

COPY --from=build /usr /usr

RUN apt-get update \

&& DEBIAN_FRONTEND=noninteractive apt-get install -y && apt-get clean

Note: You should leverage the layering from Docker to improve the build speed if
you need to build again. Qemu emulates a ARM64 CPU in software on a x86 System
which is slow. In case you are planning to build large application from source please
consider to run this on a ARM64 based host.

We provide up-to-date images containing the ifm3d library, both on the docker hub here and
on github here. We recommend using the image available on github, as it does not come with
rate limits. You can simply pull it like so:

$ docker pull ghcr.io/ifm/ifm3d:latest

latest: Pulling from ifm/ifm3d

...

Digest: sha256:f54a5890d75618c5bd21535dfa71e1cd9b1a8515902fb8e1912e6f586e0685a3

Status: Downloaded newer image for ghcr.io/ifm/ifm3d:latest

ghcr.io/ifm/ifm3d:latest

Note: Due to easier readability, the pull process output was shortened

Let’s try the image and see if we can connect to a (physically connected) VPU:

$ docker run -it ghcr.io/ifm/ifm3d:latest

ifm@1f21eb1f98d2:/$ ifm3d dump

{

"device": {

"clock": {

"currentTime": 1581111542490926304,

...

56 Chapter 1. Everything related to the O3R family

https://hub.docker.com/r/ifmrobotics/ifm3d
https://github.com/ifm/ifm3d/pkgs/container/ifm3d

O3R

If this is working, we can also try the ifm3dpy implementation:

ifm@8a167fde9edc:/$ python3

Python 3.6.9 (default, Apr 18 2020, 01:56:04)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import ifm3dpy

>>> o3r = ifm3dpy.O3RCamera()

>>> o3r.to_json()

{'device': {'clock': {'currentTime': ...

Building on top of the ifm base image

Now you want your own container, with your python script to run. Base your Dockerfile simply
on the ghcr.io/ifm/ifm3d:latest image:

FROM ghcr.io/ifm/ifm3d:latest

You can now include your application code.

Once the image is built, you can deploy it to the VPU. Read more here.

1.4.2 Deploying a container to the VPU

There are several ways for deploying a container. This documentation focuses on the following
two:

• Using scp

• Using a local docker registry

Every VPU has two users:

• root - ifm user with all rights

• oem - customer user, this is the only one you have access to.

The first step to access the VPU is to connect to it via SSH.

SSH connection

To connect to the VPU via ssh, follow these steps:

1. Generate an ssh key-pair

2. Upload the public key to the VPU

3. Connect to the VPU using the passphrase

1.4. Docker on O3R 57

O3R

1. Generate ssh key-pair

All user specific ssh keys are located at ~/.ssh. This is the place where the private key for
the connection to the VPU should be stored.

To generate an ssh key-pair, use ssh-keygen:

$ cd ~/.ssh/

~/.ssh$ ssh-keygen -t rsa -b 4096 -C "[email-address]"

Generating public/private rsa key pair.

Enter file in which to save the key (/home/devoegse/.ssh/id_rsa): id_o3r

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

...

A passphrase is also needed. After that command, two new keys are generated within the
~/.ssh directory. With the example above it would be: id_o3r & id_o3r.pub.

2. Upload the public key to the VPU

Uploading the public (.pub) ssh key to the VPU is achieved via the ifm3d library. The device
configuration includes a parameter for authorized keys: authorized_keys.

"network": {

"authorized_keys": "",

"ipAddressConfig": 0,

"macEth0": "00:04:4B:EA:95:FB",

"macEth1": "00:02:01:23:33:36",

"networkSpeed": 1000,

"staticIPv4Address": "192.168.0.69",

"staticIPv4Gateway": "192.168.0.201",

"staticIPv4SubNetMask": "255.255.255.0",

"useDHCP": false

},

To add a new key, the VPU configuration needs to be changed. This can be done with several
ways (see configuring the camera). The easiest way in this case is to use the jq command:

$ ifm3d dump | jq --arg id "$(< ~/.ssh/id_o3r.pub)" '.device.network.authorized_keys=

→˓$id' | ifm3d config

• ifm3d dump - This command receives the current configuration from the VPU.

• jq --arg id "$(< ~/.ssh/id_o3r.pub)" - This loads the public key into the variable
id and provides it to the jq command

• '.device.network.authorized_keys=$id' - Here the json value from autho-
rized_keys is changed for the public key within the variable id

• ifm3d config - The new json is now used to change the configuration of the VPU via
ifm3d config

58 Chapter 1. Everything related to the O3R family

O3R

3. Connect to the VPU using the passphrase

After the key is uploaded, it is possible to connect with ssh and the username oem to the VPU:

$ ssh oem@192.168.0.69

The authenticity of host '192.168.0.69 (192.168.0.69)' can't be established.

ECDSA key fingerprint is SHA256:8gjC9za45TTRZNz5JCMwaNJ27BLfsPyDtjBaBQ2vyHw.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.0.69' (ECDSA) to the list of known hosts.

o3r-vpu-c0:~$

There will be a prompt for the passphrase, configured during step 1.

SCP

The first way to transfer a container to the VPU is to copy a saved container via scp.

path/to/container/folder$ scp ifm3d.tar oem@192.168.0.69:/home/oem/

oem@192.168.0.69’s password:

ifm3d.tar 100% ␣

→˓108MB 51.5MB/s 00:02

The system will ask for a password: oem

To verify if the copy process worked, use the command sync on the VPU after the copying the
container.

Note: Use ssh to connect to the VPU - see SSH connection

Note: The oem user has no write rights outside of his/her home directory. Therefore
use /home/oem/ for saving files etc. It is possible to create folders within the oem
directory.

Once you copied the container, you can load and start it (see instructions)

Local docker registry

Due to the fact that proxy servers are sometimes hard to deal with and that disk resources on
the VPU is also limited, it might come handy to run a Docker registry in your local network.

Create a local Docker registry

The local Docker registry is created by using the container images provided by Docker it-
self and host them. On the host system (not the VPU) activate a local Docker registry with
following commands:

$ docker pull registry:latest

Start the registry and bind the container ports to the host ports

$ docker run -d -p 5000:5000 --name registry registry:latest

Note: A local registry might seem complicated at first. For further information refer
to the official documentation.

1.4. Docker on O3R 59

https://docs.docker.com/registry/deploying/

O3R

Push a container to your local registry

To push a container to the registry, it is recommended to first tag the image differently. E.g.
if the registry is run on the localhost with port 5000, the image tag could be named:

docker tag ifm3d localhost:5000/ifm3d

Use the normal push command for uploading to the local registry:

docker push localhost:5000/ifm3d

Pull a container from the local registry - host

If a local Docker registry is running, use docker pull to pull the image:

docker pull localhost:5000/ifm3d

Pull a container from the local registry - VPU

Coming soon

Stop the registry

To stop the registry:

docker container stop registry && docker container rm -v registry

1.4.3 Autostart a container on the VPU

Once the container(s) has(ve) been transferred to the VPU, you can set up an autostart service
to automatically run the containers as start-up. For auto-starting a container, Docker compose
is used. The VPU already provides a service .config/systemd/user/oem-dc@.servicewhich
can be used for auto-starting a service: this is what we will use.

Docker compose

Generate a sample directory and a docker-compose.yml file at following destination:
/usr/share/oem/docker/compose/. E.g. /usr/share/oem/docker/compose/jupyter/
docker-compose.yml

This file should contain the information for starting the container you need.

60 Chapter 1. Everything related to the O3R family

O3R

Sample docker-compose.yml

The following docker-compose.yml file would create a service called jupyter, based on the
image jupyter and bind the container ports 8888 to the host port 8888 on start.

version: "3.3"

services:

jupyter:

image: jupyter

ports:

- 8888:8888

Note: The Docker version on the VPU expects the docker-compose.yml to be either
version 2.2 or 3.3. Fur further information refer to docker compose.

Start the container(s)

A docker-compose.yml can be started via docker-compose up within the docker-compose.
yml directory.TODO: add example of docker compose-upIt is also possible to start the ser-
vice with systemctl:

systemctl --user start oem-dc@jupyter

After a few seconds, the service should have started and it is possible to get the status of this
service:

systemctl --user status oem-dc@jupyter

TODO: add the result of this cmd

Another way of seeing all running container is docker ps.

Auto start the container(s) after a reboot of the VPU

To restart the container automatically, simply enable the service:

systemctl --user enable oem-dc@jupyter

See Start the container on how to start the container with a docker-compose.yml file

Save data on consistently on the VPU with a container

TODO: move this section to a more appropriate chapter Coming soon

Data created and saved within a container is only available for the running instance of the
container itself. Restarting the container leads to a loss of the previously saved data. Use
volumes to avoid this scenario.

1.4. Docker on O3R 61

https://docs.docker.com/compose/gettingstarted/

O3R

1.4.4 Enabling GPU usage on the VPU

Using the GPU of the VPU

The VPU provides substantial GPU (Graphical Processing Unit) power to the user. The best
way to experience this is using CUDA and the samples from NVIDIA. To do so, we are building
a container with the sample files from NVIDIA, push it to the VPU and execute it. This,
however is not enough. Docker is not using the GPU power if not specified. We need to
activate this too via the right runtime.

Dockerfile sample

The following Dockerfile builds the container with the samples from NVIDIA (see https://
github.com/NVIDIA/cuda-samples/tree/master/Samples/deviceQuery).

Dockerfile:

Base linux for tegra (l4t) amr64/aarch64 image

FROM nvcr.io/nvidia/l4t-base:r32.4.3 AS buildstage

Install necessary updates + git (for cloning the nvidia samples). Tag v10.2␣

→˓specifies the right commit. VPU runs CUDA 10.2

RUN apt-get update && apt-get install -y --no-install-recommends make g++ git && apt-

→˓get install ca-certificates -y

RUN git clone --depth 1 --branch v10.2 https://github.com/NVIDIA/cuda-samples.git /

→˓tmp/

Change into the right directory and install/make the samples

WORKDIR /tmp/Samples/deviceQuery

RUN make clean && make

Multistage build to reduce the image size on the platform

FROM nvcr.io/nvidia/l4t-base:r32.4.3

Copy the samples from the buildstage into the final image

RUN mkdir -p /usr/local/bin

COPY --from=buildstage /tmp/Samples/deviceQuery/deviceQuery /usr/local/bin

Execute the deviceQuery and check for CUDA support. Don't forget the runtime with␣

→˓the docker run command

CMD ["/usr/local/bin/deviceQuery"]

Building the container:

$ docker image build . -t cuda-samples

Sending build context to Docker daemon 875.5MB

Step 1/9 : FROM nvcr.io/nvidia/l4t-base:r32.4.3 AS buildstage

---> c93fc89026d9

...

Successfully tagged cuda-samples:latest

After building the container, you can follow the steps from the documentation to test the
container on the VPU:

• Save the container: $ docker save cuda-samples > cuda-samples.tar

• Transfer the container: $ scp cuda-samples.tar oem@192.168.0.69:/home/oem

62 Chapter 1. Everything related to the O3R family

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/deviceQuery
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/deviceQuery

O3R

• Load the container: $ docker load < cuda-samples.tar

Start the container with the NVIDIA runtime

To use CUDA and the GPU, you have to specify the NVIDIA runtime, either with the docker
run command, or within the docker-compose.yml (see autostart).

Using docker run

Use the --runtime nvidia argument when running your container. The output of the running
container should look similar to this:

o3r-vpu-c0:~$ docker run -it --runtime nvidia cuda-samples

/usr/local/bin/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA Tegra X2"

CUDA Driver Version / Runtime Version 10.2 / 10.2

CUDA Capability Major/Minor version number: 6.2

Total amount of global memory: 3829 MBytes (4014751744 bytes)

(2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores

GPU Max Clock rate: 1300 MHz (1.30 GHz)

Memory Clock rate: 1300 Mhz

Memory Bus Width: 128-bit

L2 Cache Size: 524288 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),␣

→˓3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 32768

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 1 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: Yes

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device supports Compute Preemption: Yes

Supports Cooperative Kernel Launch: Yes

Supports MultiDevice Co-op Kernel Launch: Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0

Compute Mode:

(continues on next page)

1.4. Docker on O3R 63

O3R

(continued from previous page)

< Default (multiple host threads can use ::cudaSetDevice() with device␣

→˓simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version =␣

→˓10.2, NumDevs = 1

Result = PASS

Note that starting the container without the runtime leads to a FAIL:

o3r-vpu-c0:~$ docker run -it cuda

/usr/local/bin/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

cudaGetDeviceCount returned 35

-> CUDA driver version is insufficient for CUDA runtime version

Result = FAIL

Use docker-compose to specify the runtime

Specifying the runtime in docker-compose.yml is possible for versions above version: "2.
3" to get the runtime argument.

version: "2.3"

services:

cuda:

image: cuda

runtime: nvidia

Start the container using docker-compose up:

o3r-vpu-c0:~$ docker-compose up

Creating network "oem_default" with the default driver

Creating oem_cuda_1 ... done

Attaching to oem_cuda_1

cuda_1 | /usr/local/bin/deviceQuery Starting...

cuda_1 |

cuda_1 | CUDA Device Query (Runtime API) version (CUDART static linking)

cuda_1 |

cuda_1 | Detected 1 CUDA Capable device(s)

cuda_1 |

cuda_1 | Device 0: "NVIDIA Tegra X2"

cuda_1 | CUDA Driver Version / Runtime Version 10.2 / 10.2

cuda_1 | CUDA Capability Major/Minor version number: 6.2

cuda_1 | Total amount of global memory: 3829 MBytes (4014751744␣

→˓bytes)

cuda_1 | (2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores

cuda_1 | GPU Max Clock rate: 1300 MHz (1.30 GHz)

cuda_1 | Memory Clock rate: 1300 Mhz

cuda_1 | Memory Bus Width: 128-bit

cuda_1 | L2 Cache Size: 524288 bytes

cuda_1 | Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072,␣

→˓65536), 3D=(16384, 16384, 16384)

cuda_1 | Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

(continues on next page)

64 Chapter 1. Everything related to the O3R family

O3R

(continued from previous page)

cuda_1 | Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048␣

→˓layers

cuda_1 | Total amount of constant memory: 65536 bytes

cuda_1 | Total amount of shared memory per block: 49152 bytes

cuda_1 | Total number of registers available per block: 32768

cuda_1 | Warp size: 32

cuda_1 | Maximum number of threads per multiprocessor: 2048

cuda_1 | Maximum number of threads per block: 1024

cuda_1 | Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

cuda_1 | Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

cuda_1 | Maximum memory pitch: 2147483647 bytes

cuda_1 | Texture alignment: 512 bytes

cuda_1 | Concurrent copy and kernel execution: Yes with 1 copy engine(s)

cuda_1 | Run time limit on kernels: No

cuda_1 | Integrated GPU sharing Host Memory: Yes

cuda_1 | Support host page-locked memory mapping: Yes

cuda_1 | Alignment requirement for Surfaces: Yes

cuda_1 | Device has ECC support: Disabled

cuda_1 | Device supports Unified Addressing (UVA): Yes

cuda_1 | Device supports Compute Preemption: Yes

cuda_1 | Supports Cooperative Kernel Launch: Yes

cuda_1 | Supports MultiDevice Co-op Kernel Launch: Yes

cuda_1 | Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0

cuda_1 | Compute Mode:

cuda_1 | < Default (multiple host threads can use ::cudaSetDevice() with device␣

→˓simultaneously) >

cuda_1 |

cuda_1 | deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime␣

→˓Version = 10.2, NumDevs = 1

cuda_1 | Result = PASS

oem_cuda_1 exited with code 0

This section explains the handling and deployment of customer specific containers for the
O3R.

1.5 FAQ - Frequently Asked Questions

Coming soon…

Here you can find different topics related to the O3R product. Containing information about:

• configuring the O3R

• using Docker on the O3R

• getting data from the system

• etc.

1.5. FAQ - Frequently Asked Questions 65

O3R

66 Chapter 1. Everything related to the O3R family

CHAPTER

TWO

IFM3D LIBRARY

2.1 ifm3d Overview

Library and utilities for working with ifm pmd-based 3D ToF Cameras.

2.1.1 Release versions

� Note that the master branch is generally in a work in progress state and you probably want
to use a tagged release version for production.

� branch o3r/main-next is an early adopters version which may/will contain changes to the
interface in the future.

2.1.2 Current Revision

2.1.3 Organization of the Software

The ifm3d software is organized into modules, they are:

As of version 0.9.0, we have removed the viewer sub-command from the ifm3d command
line tool (part of the tools module). The objective was to lessen the dependencies for the
core library. However, a clone of the pre-0.9.0 viewer is available in its own repository:
ifm3d-pcl-viewer.

2.1.4 Additional Resources

• Viewing the Point Cloud

• ROS

• ROS 2

67

https://github.com/ifm/ifm3d/releases
https://github.com/ifm/ifm3d-pcl-viewer
https://github.com/ifm/ifm3d-pcl-viewer
https://github.com/ifm/ifm3d-ros
https://github.com/ifm/ifm3d-ros2

O3R

2.1.5 Known Issues, Bugs, and our TODO list

Please see the Github Issue Tracker.

2.1.6 LICENSE

Please see the file called LICENSE.

2.2 Installing the software

2.2.1 O3R early adopters

Installing ifm3d from source

Build Dependencies

Additionally, if you plan to build the debian packages and have the dependencies computed
for you dynamically (see the note below on the repackage target), you will also need:

• Python 2.7

• readelf (Part of the binutils package)

• ldd (Part of the libc-bin package)

• dpkg

We note that, if you are running on a supported Linux, all of these packages are available
through the offical debian repositories and should be a simple apt-get away from being in-
stalled on your machine.

Use the following steps to install all the library dependencies on Debian based systems

$ sudo apt-get update && sudo apt-get -y upgrade

$ sudo apt-get update && sudo apt-get install -y

git \

jq \

libcurl4-openssl-dev \

libgtest-dev libgoogle-glog-dev \

libxmlrpc-c++8-dev \

libproj-dev \

build-essential \

coreutils \

cmake

Only if you wish to build the image and/or opencv modules

$ sudo apt-get update && sudo apt-get install -y libopencv-dev libpcl-dev

Only if you wish to build the python bindings

$ sudo apt-get update && sudo apt-get install pybind11-dev

Note: The package name may differ in different flavours of Linux. Above apt-get commands
are specific to Debian based systems

68 Chapter 2. ifm3d library

https://github.com/ifm/ifm3d/issues
https://www.python.org/
https://www.gnu.org/software/binutils/
http://man7.org/linux/man-pages/man1/ldd.1.html
https://help.ubuntu.com/lts/serverguide/dpkg.html

O3R

Building From Source

Start with cloning the code from the ifm3d github repository here.

� The code on the branch o3r/main-next is updated nightly and contains the latest changes to
the library. It is typically a work in progress.� We recommend using tagged versions for your
builds, to ensure consistency between builds. The latest tagged version can be found here.

The default build

By default, the ifm3d build enables the camera, framegrabber, stlimage, and toolsmodules.
Building the software follows the usual cmake idiom of:

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX=/usr ..

$ cmake --build .

$ sudo cmake --build . --target install

Building with PCL and/or OPENCV

ifm3d provides multiple image buffers. The default one, stlimage only relies on standard
c++ libraries. The image module relies on opencv and pcl. The opencv modules relies only
on openCV. To build either of these use the following:

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_MODULE_OPENCV=ON -DBUILD_IN_DEPS=OFF ..

OR

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_MODULE_IMAGE=ON -DBUILD_IN_DEPS=OFF ..

$ cmake --build .

$ sudo cmake --build . --target install

Note: Many ifm3d users ultimately plan to use this library along with its asso-
ciated ROS wrapper. If this is the case, you need to be sure that the version of
OpenCV that you link to in both ifm3d and ifm3d-ros are consistent. To give you
some control over that, the build process allows you to explicitly call out which ver-
sion of OpenCV you wish to use. For example, if you are using OpenCV 2.4, your
cmake line above should look something like: $ cmake -DCMAKE_INSTALL_PREFIX=/
usr -DFORCE_OPENCV2=ON ... Similarly, if you are using OpenCV 3, your cmake
line above should look something like: $ cmake -DCMAKE_INSTALL_PREFIX=/usr
-DFORCE_OPENCV3=ON ..

2.2. Installing the software 69

https://github.com/ifm/ifm3d
https://github.com/ifm/ifm3d/tags

O3R

Building the Python Bindings

There are several options available for building and/or installing the ifm3dpy module. The
most simple one is to install with pip:

pip install ifm3dpy

For more options, please refer to the python documentation.

A sumo-build

If you want to build everything:

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_MODULE_OPENCV=ON -DBUILD_MODULE_

→˓PCICCLIENT=ON -DBUILD_MODULE_IMAGE=ON -DBUILS_IN_DEPS=OFF ..

$ cmake --build .

$ sudo cmake --build . --target install

Building the examples

The examples can be built along with the rest of the library by switching the proper flag on.
Assuming you are in the /build folder:

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_O3R_EXAMPLES=ON ..

$ make

Building debian packages

Alternatively, to build debs to be distributed to multiple runtime machines, you can use the
following:

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX=/usr ..

$ cmake --build .

$ cmake --build . package

$ cmake --build . repackage

$ sudo dpkg -i ifm3d_0.18.0_amd64-camera.deb

$ sudo dpkg -i ifm3d_0.18.0_amd64-swupdater.deb

$ sudo dpkg -i ifm3d_0.18.0_amd64-framegrabber.deb

$ sudo dpkg -i ifm3d_0.18.0_amd64-stlimage.deb

$ sudo dpkg -i ifm3d_0.18.0_amd64-tools.deb

(The version number embedded in the deb file will be dependent upon which version of the
ifm3d software you are building)

Note: Experienced users may be puzzled by the repackage step. This step is used
to dynamically compute the debian dependencies for the particular module. Due to
how we are partitioning out the software, this approach is necessary vs. the more
traditional CPACK_DEBIAN_PACKAGE_SHLIBDEPS wrapper around dpkg-shlibdeps.

70 Chapter 2. ifm3d library

O3R

We basically created a version of that tool that exploits a-priori information about
the ifm3d environment to properly compute the debian dependencies. If you are
building debs on a build machine to be distributed out to various runtime comput-
ers, you will certainly want to execute the repackage target so that you are ensured
the runtime machines have the proper dependency chain in place.

Building ifm3d from source on Windows

This tutorial details how to compile the ifm3d library and its dependencies on a Windows
platform using Visual Studio.

Dependencies

Build tools

• CMake v3.11.0 or newer (also available through the Visual Studio installer)

• Git for Windows (also available through the Visual Studio installer)

• Microsoft Visual Studio version 2017 or 2019. The free ‘Community’ edition is sufficient.
Be sure to select the ‘Desktop development with C++’ workflow.

Binary Dependencies for ifm3d::image and ifm3d::opencv optional modules

PCL

PCL is available in binary form for Windows platforms via the project’s GitHub releases page.
ifm3d is tested against version v1.8.1 which can be downloaded and installed via the following
links.

Choose ONE of the following based on your target version of Visual Studio.

• Visual Studio 2017/2019: PCL-1.8.1-AllInOne-msvc2017-win64.exe

NOTE: Opt-in to installing the 3rd party dependencies of PCL. ifm3d also takes a dependency
on the boost library. For simplicity/compatibility, this tutorial builds against the version of
boost provided along with PCL.

NOTE: It is possible to build an ifm3d variant which does not depend on the PCL library. See
Appendix A below for instructions.

OpenCV 3.4

OpenCV 3.4 is available in binary form for Windows platforms from the OpenCV Releases
page. ifm3d is tested against v3.4.9, available from the following link:

• OpenCV 3.4.9

Download it and extract to a known location (this tutorial assumes a path of C:\opencv.

2.2. Installing the software 71

http://www.cmake.org
https://gitforwindows.org
https://www.visualstudio.com
https://github.com/PointCloudLibrary/pcl/releases/download/pcl-1.8.1/PCL-1.8.1-AllInOne-msvc2017-win64.exe
https://opencv.org/releases/
https://sourceforge.net/projects/opencvlibrary/files/3.4.9/opencv-3.4.9-vc14_vc15.exe/download

O3R

Source Dependencies

ifm3d depends on several additional libraries (curl, xmlrpc-c, glog, and gtest) which are not
available as binary packages on Windows.

Building source dependencies with ifm3d

ifm3d from version 0.90.4 onwards provides BUILT_IN_DEPS option to cmake configure com-
mand, which fetch required dependencies and build it with ifm3d. On sucessfull first instal-
lation user can disable BUILT_IN_DEPS option and can use the installed dependencies for
future builds of the ifm3d.

Note: As gtest is not a part of the build time dependencies, to enable the testing of ifm3d
please clone googletest as explained in gtest section.

Following instructions detail how to build ifm3d along with its dependencies.

#set the environment variables

set IFM3D_CMAKE_GENERATOR="Visual Studio 16 2019"

set IFM3D_BUILD_DIR=C:\ifm3d

set CONFIG=Release #set to Debug for debug binaries

#make the working dir

mkdir %IFM3D_BUILD_DIR%

Clone the repository

cd %IFM3D_BUILD_DIR%

git clone https://github.com/ifm/ifm3d.git

cd %IFM3D_BUILD_DIR%\ifm3d

Configure

mkdir build

cd build

cmake -G %IFM3D_CMAKE_GENERATOR% -DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=ON -DBUILD_SDK_

→˓PKG=ON -DGTEST_CMAKE_DIR=%IFM3D_BUILD_DIR%\googletest\googletest -Dgtest_force_

→˓shared_crt=TRUE -DCMAKE_PREFIX_PATH=%IFM3D_BUILD_DIR%\install -DCMAKE_BUILD_TYPE=

→˓%CONFIG% -DCMAKE_INSTALL_PREFIX=%IFM3D_BUILD_DIR%\install ..

Build ifm3d and dependencies

cmake --build . --config %CONFIG% --target ALL_BUILD

install

cmake --build . --config %CONFIG% --target install

On successful execution of install step, user can disable the BUILD_IN_DEPS flag by append-
ing -DBUILD_IN_DEPS=OFF to cmake configure step, this will avoid building dependencies on
every clean build.

Note: By default ifm3d::Image and ifm3d::opencv modules are disabled, to enabled
these modules use -DBUILD_MODULE_IMAGE=ON and -DBUILD_MODULE_OPENCV=ON respec-
tively to cmake configure command. Also append the opencv install binary path to
-DCMAKE_PREFIX_PATH as shown in Building ifm3d section

72 Chapter 2. ifm3d library

O3R

Buidling the source dependencies independent of ifm3d

The following instructions detail how to compile them from source for your target.

Environment Configuration

The following environment variables are used by this tutorial to make customization simpler.
Modify them as needed for your environment. You can obtain a list of valid cmake generator
strings via cmake -h. Again, ifm3d supports version 2017 and newer.

set IFM3D_OPENCV_PATH=C:\opencv\build

set IFM3D_CMAKE_GENERATOR="Visual Studio 15 2017 Win64"

set IFM3D_BUILD_DIR=C:\ifm3d

set CONFIG=Release

Finally, create the working directory in which ifm3d and its dependencies will be built:

mkdir %IFM3D_BUILD_DIR%

curl

cd %IFM3D_BUILD_DIR%

git clone --branch curl-7_47_1 https://github.com/curl/curl.git

cd %IFM3D_BUILD_DIR%\curl

mkdir build

cd build

cmake -G %IFM3D_CMAKE_GENERATOR% -DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=ON -DCMAKE_

→˓INSTALL_PREFIX=%IFM3D_BUILD_DIR%\install ..

cmake --build . --clean-first --config %CONFIG% --target INSTALL

xmlrpc-c

cd %IFM3D_BUILD_DIR%

git clone --branch 1.33.14-cmake https://github.com/ifm/xmlrpc-c.git

cd %IFM3D_BUILD_DIR%\xmlrpc-c

mkdir build

cd build

cmake -G %IFM3D_CMAKE_GENERATOR% -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=%IFM3D_

→˓BUILD_DIR%\install ..

cmake --build . --clean-first --config %CONFIG% --target INSTALL

2.2. Installing the software 73

O3R

glog

cd %IFM3D_BUILD_DIR%

git clone --branch v0.3.5 https://github.com/google/glog.git

cd %IFM3D_BUILD_DIR%\glog

mkdir build

cd build

cmake -G %IFM3D_CMAKE_GENERATOR% -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=%IFM3D_

→˓BUILD_DIR%\install ..

cmake --build . --clean-first --config %CONFIG% --target INSTALL

gtest

cd %IFM3D_BUILD_DIR%

git clone --branch release-1.8.1 https://github.com/google/googletest.git

NOTE: gtest is only needed to build and run unit tests. To skip, add -DBUILD_TESTS=OFF to
the cmake configuration command line on the ifm3d library below.

Building ifm3d

Clone the repository

cd %IFM3D_BUILD_DIR%

git clone https://github.com/ifm/ifm3d.git

cd %IFM3D_BUILD_DIR%\ifm3d

Configure

mkdir build

cd build

cmake -G %IFM3D_CMAKE_GENERATOR% -DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=ON -DBUILD_SDK_

→˓PKG=ON -DGTEST_CMAKE_DIR=%IFM3D_BUILD_DIR%\googletest\googletest -Dgtest_force_

→˓shared_crt=TRUE -DCMAKE_PREFIX_PATH=%IFM3D_BUILD_DIR%\install;%IFM3D_OPENCV_PATH% -

→˓DBOOST_ROOT=%IFM3D_BOOST_ROOT% -DBoost_USE_STATIC_LIBS=ON -DCMAKE_BUILD_TYPE=%CONFIG

→˓% -DCMAKE_INSTALL_PREFIX=%IFM3D_BUILD_DIR%\install ..

run tests

cmake --build . --config %CONFIG% --target check

#install

cmake --build . --config %CONFIG% --target INSTALL

Running the ifm3d command line tool

After Building ifm3d, the binary files will be installed at %IFM3D_BUILD_DIR%\install\bin.
To run the ifm3d tool you need to add this directory to your path. You will also need to add
the opencv directory to your path.

If built targeting Visual Studio 2017/2019:

set PATH=%IFM3D_BUILD_DIR%\install\bin;%IFM3D_OPENCV_PATH%\x64\vc15\bin;%PATH%

74 Chapter 2. ifm3d library

O3R

After that you should be able to run the ifm3d tool

ifm3d

Appendix A: Building without PCL

The ifm3d library offers an alternative image buffer implementation which only depends on
OpenCV, thus eliminating a dependency on PCL. In order to build ifm3d without a dependency
on PCL, the following modifications to the instructions above are necessary.

Select the OpenCV Image Container

The ifm3d::ImageBuffer module (has dependency on PCL) must be disabled with the flag
-DBUILD_MODULE_IMAGE=OFF and the ifm3d::OpenCVBuffer module must be enabled with the
flag -DBUILD_MODULE_OPENCV=ON. The full cmake configuration command is:

cmake -G %IFM3D_CMAKE_GENERATOR% -DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=ON -DBUILD_SDK_

→˓PKG=ON -DGTEST_CMAKE_DIR=%IFM3D_BUILD_DIR%\googletest\googletest -Dgtest_force_

→˓shared_crt=TRUE -DCMAKE_PREFIX_PATH=%IFM3D_BUILD_DIR%\install;%IFM3D_OPENCV_PATH% -

→˓DBOOST_ROOT=%IFM3D_BOOST_ROOT% -DBoost_USE_STATIC_LIBS=ON -DCMAKE_BUILD_TYPE=%CONFIG

→˓% -DCMAKE_INSTALL_PREFIX=%IFM3D_BUILD_DIR%\install -DBUILD_MODULE_IMAGE=OFF -DBUILD_

→˓MODULE_OPENCV=ON ..

Python installation

Note: We recommend for testing purposes to install the ifm3dpy package in an clean
python environment first. You can use python -m venv "venv-name" to create a
new virtual environment.

You can use the official PyPI package to install the ifm3dpy within your virtual environment:

pip install ifm3dpy

Now, you can check your installation.

Check the ifm3dpy installation

Let’s verify quickly that the installation worked! This command should display the list of
packages installed in your environment:

pip freeze

Open up a python shell with:

python.exe

OR

./python.exe

OR

python

Then try importing the package:

2.2. Installing the software 75

O3R

import ifm3dpy

print(ifm3dpy.__version__)

>>>0.91.0

You can test the connection from VPU to camera head with following lines:

from ifm3dpy import O3RCamera

o3r = O3RCamera()

config = o3r.get() #get the configuration saved on the VPU

Using the package json provides an easier tool for displaying JSON-Strings. The configura-
tion from the VPU is always a JSON-String (output below shortened for display purposes).

import json

print(json.dumps(config, indent=4))

>>>{

"device": {

"clock": {

"currentTime": 1581090739817663072

},

"diagnostic": {

"temperatures": [],

"upTime": 94000000000

},

"info": {

"device": "0301",

"deviceTreeBinaryBlob": "tegra186-quill-p3310-1000-c03-00-base.dtb",

"features": {},

"name": "TableTop2",

"partNumber": "M03975",

"productionState": "AA",

"serialNumber": "000201234176",

"vendor": "0001"

},

"network": {

"authorized_keys": "",

"ipAddressConfig": 0,

"macEth0": "00:04:4B:EA:9F:D1",

"macEth1": "00:02:01:23:41:76",

"networkSpeed": 1000,

"staticIPv4Address": "192.168.0.69",

"staticIPv4Gateway": "192.168.0.201",

"staticIPv4SubNetMask": "255.255.255.0",

"useDHCP": false

},

"state": {

"errorMessage": "",

"errorNumber": ""

},

"swVersion": {

"kernel": "4.9.140-l4t-r32.4+gc35f5eb9d1d9",

"l4t": "r32.4.3",

"os": "0.13.13-221",

"schema": "v0.1.0",

"swu": "0.15.12"

}

},

(continues on next page)

76 Chapter 2. ifm3d library

O3R

(continued from previous page)

"ports": {

"port0": {

"acquisition": {

"framerate": 10.0,

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"data": {

"algoDebugConfig": {},

"availablePCICOutput": [],

"pcicTCPPort": 50010

},

"info": {

"device": "2301",

"deviceTreeBinaryBlobOverlay": "001-ov9782.dtbo",

"features": {

"fov": {

"horizontal": 127,

"vertical": 80

},

"resolution": {

"height": 800,

"width": 1280

},

"type": "2D"

},

"name": "",

"partNumber": "M03976",

"productionState": "AA",

"sensor": "OV9782",

"sensorID": "OV9782_127x80_noIllu_Csample",

"serialNumber": "000000000281",

"vendor": "0001"

},

"mode": "experimental_autoexposure2D",

"processing": {

"extrinsicHeadToUser": {

"rotX": 0.0,

"rotY": 0.0,

"rotZ": 0.0,

"transX": 0.0,

"transY": 0.0,

"transZ": 0.0

},

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"state": "RUN"

},

...

}

2.2. Installing the software 77

O3R

Docker dev containers

Development containers are available. They are built nightly with the latest version of ifm3d
available on the o3r/main-next branch. You can pull them using the following command:

$ docker pull ghcr.io/ifm/ifm3d:latest

For more detailed documentation on using docker containers with the O3R platform, you can
refer to this section.

2.2.2 Stable release

Ubuntu Linux via Apt (amd64/arm64)

� The provided apt repositories are experimental and shall be used with caution, the version
uploaded to the apt repository might change and thus may break your use-case. If you rely on
a specific version of the software we do recommend to run your own apt repository or build
from source.

We provide apt repositories for the following Ubuntu Linux distributions and architectures:

Add the repository to your sources.list:

$ sudo sh -c 'echo "deb [arch=$(dpkg --print-architecture)] https://nexus.ifm.com/

→˓repository/ifm-robotics_ubuntu_$(lsb_release -sc)_$(dpkg --print-architecture)

→˓$(lsb_release -sc) main" > /etc/apt/sources.list.d/ifm-robotics.list'

Add the public key for the repository:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key␣

→˓8AB59D3A2BD7B692

If you experience issues with connecting the key server you can try this alternative which
uses curl. This is maybe helpful when you are behind a proxyserver.

curl -sSL 'http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x8AB59D3A2BD7B692' |␣

→˓sudo apt-key add -

:exclamation: In case of any name resolution issues, it is worth to check the environment
variable $https_proxy for proper proxy configuration.

Install the software:

$ sudo apt-get update

$ sudo apt-get install ifm3d-camera \

ifm3d-framegrabber \

ifm3d-swupdater \

ifm3d-image \

ifm3d-opencv \

ifm3d-pcicclient \

ifm3d-tools \

ifm3d-python3 \

ifm3d-pcl-viewer \

78 Chapter 2. ifm3d library

O3R

Linux for Tegra

� The provided apt repositories are experimental and shall be used with caution, the version
uploaded to the apt repository might change and thus may break your use-case. If you rely on
a specific version of the software we do recommend to run your own apt repository or build
from source.

Linux for Tegra is an NVIDIA Linux distribution for the Jetson family of GPU SoC systems.
NVIDIA distributes a software package called JetPack with various utilities and libraries op-
timized for the target hardware. There are a few packages which override the core Ubuntu
packages (OpenCV as the primary example). We provide alternate apt repositories for ifm3d
built on top of the JetPack libraries rather than the Ubuntu libraries.

Add one of the following repositories based on your desired JetPack/L4T release:

Jetpack 4.4:

$ sudo sh -c 'echo "deb https://nexus.ifm.com/repository/ifm-robotics_l4t_jetpack_4_4_

→˓arm64 melodic main" > /etc/apt/sources.list.d/ifm-robotics.list'

Jetpack 4.3:

$ sudo sh -c 'echo "deb https://nexus.ifm.com/repository/ifm-robotics_l4t_jetpack_4_3_

→˓arm64 melodic main" > /etc/apt/sources.list.d/ifm-robotics.list'

Add the public key for the repository:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key␣

→˓8AB59D3A2BD7B692

Install the software:

$ sudo apt-get update

$ sudo apt-get install ifm3d-camera \

ifm3d-framegrabber \

ifm3d-swupdater \

ifm3d-image \

ifm3d-opencv \

ifm3d-pcicclient \

ifm3d-tools \

ifm3d-python3 \

ifm3d-pcl-viewer \

ROS/ROS2

For users interested in using our ROS bindings, ifm3d and ifm3d-ros are both available in
the ROS distribution for Kinetic and Melodic (Noetic coming shortly).

$ sudo apt install ros-kinetic-ifm3d

or

$ sudo apt install ros-melodic-ifm3d

For users interested in using our ROS2 bindings, binaries will be included (starting with
dashing) very soon. For now, packages must be built from source. Do not use the debian

2.2. Installing the software 79

https://github.com/ifm/ifm3d-ros
https://github.com/ifm/ifm3d-ros2

O3R

mirror for ifm3d since (depending on version) ROS2 ships parallel versions of some core
libraries (OpenCV, PCL) as compared with standard Ubuntu. ifm3d must be built against the
proper dependencies.

2.3 Basic Library Usage

2.3.1 First steps with ifm3d/ifm3dpy

After installing the ifm3d/ifm3dpy library, you most likely want to receive an image as fast and
possible. The next steps will guide you through the process. You will find more information
in the ifm3d API documentation.

RUN/CONF/IDLE

The default configuration of all heads is “CONF”. You cannot receive any images
before changing to “RUN”.

To set a head into "RUN", the configuration of the VPU needs to be changed. This change needs
to be uploaded to the VPU afterwards.

Please refer to the this section for more information.

Following steps describe the change of the state of a single head.

from ifm3dpy import O3RCamera

o3r = O3RCamera()

config = o3r.get()

config['ports']['port0']['state'] = "RUN" #Expecting a head on Port 0

o3r.set(config)

Note: Depending where your imager is connected, 'port0' might not work.

Receive an image

If the head is in "RUN", it is possible to receive images.

Please refer to this section for more information.

To display the image directly, we use matplotlib.

from ifm3dpy import O3RCamera, FrameGrabber, ImageBuffer

import matplotlib.pyplot as plt

o3r = O3RCamera()

fg = FrameGrabber(o3r, pcic_port=50010) #Expecting a head on Port 0 (Port 0 == 50010)

im = ImageBuffer()

if fg.wait_for_frame(im, 1000):

plt.imshow(im.distance_image())

80 Chapter 2. ifm3d library

O3R

2.3.2 How to: configure the camera

The O3R has multiple parameters that have an influence on the point cloud. Some of them
affect the rawmeasurement and others modify how the data is converted into x,y,z, etc values.
These parameters can be changed to better fit your applications and we are going to see how
here. You can refer to this page for a detailed description of each parameter.

There are multiple functions available to read the current configuration of the device and to
set a new one. We are using JSON formatting.

For this process, we have to initialize the camera object (please have a look at the code
example provided for full details of the imported libraries).

Python

o3r = O3RCamera()

C++

auto cam = std::make_shared<ifm3d::O3RCamera>();

Note: if you are using multiple ifm devices (O3D, O3X, O3R), you can use the CameraBase
class.

Python

cam = CameraBase()

C++

If you need to use Device specific functions at a later point you can cast the pointer to the
relevant class:

2.3. Basic Library Usage 81

O3R

auto cam = ifm3d::CameraBase::MakeShared();

auto cam_O3R = std::static_pointer_cast<ifm3d::O3RCamera>(cam);

Read the current configuration

The first provided function outputs the current configuration of the device (the VPU and each
head currently attached). This function outputs the full configuration, including the parame-
ters set for each camera head, but also other aspects like MAC and IP addresses, etc.

Python

conf = cam.get();

C++

json conf = cam->Get();

Write a new configuration

To write a new configuration to the device, you need to provide said configuration in json
formatting. The provided configuration can be a subset or the full configuration.

Python

o3r.set({'device':{'info':{'name':'great_o3r'}}})

C++

cam->Set(R"({"device":{"info": {"name": "my_o3r"}}})");

Note: we use string literals for easier readability.

To make the configuration persistent over reboots, you need to use the following function:

Python

o3r.save_init()

C++

cam->SaveInit();

The full example

Python

import json

Define the ifm3d objects for the communication

from ifm3dpy import O3RCamera

o3r = O3RCamera()

(continues on next page)

82 Chapter 2. ifm3d library

https://en.cppreference.com/w/cpp/language/string_literal

O3R

(continued from previous page)

Get the current configuration

config = o3r.get()

Print a little part from the config to verify the configuration

print(json.dumps(config['device']['swVersion'], indent=4))

Note: this assumes that a camera is plugged into port 1

print(config['ports']['port1']['state'])

Let's change the name of the device

o3r.set({'device':{'info':{'name':'great_o3r'}}})

o3r.save_init()

Double check the configuration

config = o3r.get()

print(config['device']['info']['name'])

C++

/*

* Copyright 2021-present ifm electronic, gmbh

* SPDX-License-Identifier: Apache-2.0

*/

#include <iostream>

#include <iomanip>

#include <memory>

#include <fstream>

#include <ifm3d/camera/camera_o3r.h>

using json = nlohmann::json;

int main(){

// Create the camera object

auto cam = std::make_shared<ifm3d::O3RCamera>();

// Get the current configuration of the camera in JSON format

json conf = cam->Get();

// Display the current configuration

std::cout << std::setw(4) << conf << std::endl;

// Configure the device from a json string

cam->Set(json::parse(R"({"device":{"info":{"name": "my_new_o3r"}}})"));

// Make the configuration persistent

cam->SaveInit();

return 0;

}

2.3. Basic Library Usage 83

O3R

2.3.3 How to: receive an image

A primary objective of ifm3d is to make it as simple and performant as possible to acquire pixel
data from an ifm 3D camera. Additionally, those data should be encoded in a useful format for
performing computer vision and/or robotics perception tasks. A typical ifm3d client program
will follow the structure of a control loop whereby images are continuously acquired from the
camera and acted upon in some application-specific way.

At the end of this ‘how to’, you should be able to receive images and know the basic usage of
the O3RCamera, FrameGrabber and StlImageBuffer classes.

Note: for O3D or O3X devices, simply use the Camera class in place of the O3RCamera
in the following code.

O3RCamera, FrameGrabber and StlImageBuffer

ifm3d provides three main classes:

• O3RCamera holds the configuration of the camera heads, handles the connection, etc;

• FrameGrabber receives frames (images);

• StlImageBuffer stores the image data.

Instantiating these objects is as follows:

Python

cam = O3RCamera()

fg = FrameGrabber(o3r, pcic_port=50012)

im = ImageBuffer()

C++

auto cam = std::make_shared<ifm3d::O3RCamera>();

auto fg = std::make_shared<ifm3d::FrameGrabber>(cam, ifm3d::DEFAULT_SCHEMA_MASK,␣

→˓50012);

auto im = std::make_shared<ifm3d::StlImageBuffer>();

The O3RCamera class, counter-intuitively, refers to the computing unit (the VPU). It inherits its
name from previous ifm 3D devices that only used one camera, with no distinction between
sensing and computing units. You can input:

• ip: the IP address of the device;

• xmlrpc_port: the XML_RPC port (it is fixed at the moment);

• password: the password to connect to the device (unused for the O3R).

The FrameGrabber stores a reference to the passed in camera shared pointer and starts a
worker thread to stream in pixel data from the device. Its inputs:

• cam: The camera instance (the image processing platform) that handles the connection
the the camera heads;

• mask: A bitmask encoding the image acquisition schema to stream in from the camera;

• port: Port number of the camera head to grab data from (not the physical port number);

The StlImageBuffer class simply serves to store the received data. It allocates space for
each individual image.

84 Chapter 2. ifm3d library

O3R

Note: instantiating the objects is done the same way for any imager type (2D, 3D,
different resolutions, etc).

Note that ifm3d encourages the use of std::shared_ptr as a means to manage the owner-
ship and lifetimes of the core actors in an ifm3d program. Indeed, you will notice that there
is no need to explicitly allocate and deallocate memory. To instantiate the ifm3d::O3RCam-
era object (or ifm3d::Camera), a call to ifm3d::O3RCamera::MakeShared() is made (or
ifm3d::Camera::MakeShared()), rather than calling std::make_shared directly. This wrap-
per function is used to handle direct hardware probing to determine the type of camera that is
connected. For example, this may be an O3R, O3D303, O3X, or something else. Regardless,
a std::shared_ptr is returned from this call.

Receive an image

You just need to call the WaitForFrame function. Input an ImageBuffer object as well as a
timeout value in ms. Make sure the camera head is in “RUN” mode.

Python

fg.wait_for_frame(im, 1000)

C++

fg->WaitForFrame(im.get(), 1000);

And you’re good to go! Now you can do something with all this data.

Note : The WaitForFramemethod is called on our ifm3d::FrameGrabber pointer. It
is passed the raw pointer to the ifm3d::ImageBuffer and a timeout in millisec-
onds. If a new frame from the camera cannot be acquired within the timeout,
WaitForFrame will return false. For the curious, we pass the raw pointer to the
ImageBuffer as opposed to the smart pointer because it is more performant (the
std::shared_ptr reference count does not need to be incremented and decre-
mented with every call to WaitForFrame and, semantically, the FrameGrabber via
the WaitForFrame call does not participate in the ownership of the ImageBuffer).

Access the data

Accessing the received data is done through the StlImageBuffer. Different data types are
available depending on whether the camera is a 2D or a 3D camera. Simply access the image
like so:

Python

For 3D data:

dist = im.distance_image();

For 2D data:

rgb = im.jpeg_image();

C++

// For 3D data:

auto dist = im->DistanceImage();

// For 2D data:

auto rgb = im->JPEGImage();

2.3. Basic Library Usage 85

O3R

The full example

Python

from ifm3dpy import O3RCamera, ImageBuffer, FrameGrabber

Initialize the objects

o3r = O3RCamera('192.168.0.69')

port='port2'

fg = FrameGrabber(o3r, pcic_port=50012)

im = ImageBuffer()

Get a frame

if fg.wait_for_frame(im, 500)==False:

raise ValueError #Exception('fg-timeout on ' + port + ' reached')

Read the distance image and display a pixel in the center

dist = im.distance_image()

(width, height) = dist.shape

print(dist[width//2,height//2])

C++

/*

* Copyright 2021-present ifm electronic, gmbh

* SPDX-License-Identifier: Apache-2.0

*/

#include <iostream>

#include <ifm3d/camera/camera_o3r.h>

#include <ifm3d/fg.h>

#include <ifm3d/stlimage.h>

#include <ifm3d/fg/distance_image_info.h>

int main(){

//////////////////////////

// Declare the objects:

//////////////////////////

// Declare the device object (one object only, corresponding to the VPU)

auto cam = std::make_shared<ifm3d::O3RCamera>();

// Declare the FrameGrabber and ImageBuffer objects.

// One FrameGrabber per camera head (define the port number).

const auto FG_PCIC_PORT = cam->Get()["/ports/port2/data/pcicTCPPort"_json_

→˓pointer];

auto fg = std::make_shared<ifm3d::FrameGrabber>(cam, ifm3d::DEFAULT_SCHEMA_MASK,␣

→˓FG_PCIC_PORT);

auto im = std::make_shared<ifm3d::StlImageBuffer>();

//////////////////////////

// Get a frame:

//////////////////////////

if (! fg->WaitForFrame(im.get(), 3000))

{

std::cerr << "Timeout waiting for camera!" << std::endl;

return -1;

}

(continues on next page)

86 Chapter 2. ifm3d library

O3R

(continued from previous page)

//////////////////////////

// Example for 3D data:

//////////////////////////

auto dist = im->DistanceImage();

std::cout << dist.height() << " " << dist.width() << std::endl;

return 0;

}

2.3.4 How to: receive data from multiple heads

/*

* Copyright 2021-present ifm electronic, gmbh

* SPDX-License-Identifier: Apache-2.0

*/

/*How to: receive data from multiple heads

One feature of the O3R platform is to enable the use of multiple camera heads of␣

→˓different types (2D, 3D, various resolutions, etc).

In this example, we show how to retrieve the pcic port number for each head␣

→˓connected to the VPU along with its type and create `FrameGrabber` and␣

→˓`ImageBuffer` objects for each.

*/

#include <ifm3d/camera/camera_o3r.h>

#include <iostream>

#include <iomanip>

#include <ifm3d/fg.h>

#include <ifm3d/stlimage.h>

// This function formats the timestamps for proper display

// a.k.a converts to local time

std::string formatTimestamp(ifm3d::TimePointT timestamp)

{

using namespace std::chrono;

std::time_t time = std::chrono::system_clock::to_time_t(

std::chrono::time_point_cast<std::chrono::system_clock::duration>(

timestamp));

milliseconds milli = duration_cast<milliseconds>(

timestamp.time_since_epoch() - duration_cast<seconds>(

timestamp.time_since_epoch()));

std::ostringstream s;

s << std::put_time(std::localtime(&time), "%Y-%m-%d %H:%M:%S")

<< ":" << std::setw(3) << std::setfill('0') << milli.count();

return s.str();

}

(continues on next page)

2.3. Basic Library Usage 87

O3R

(continued from previous page)

int main(){

// Declare the camera object

auto cam = std::make_shared<ifm3d::O3RCamera>();

// Retreive ports configuration

json conf = cam->Get();

// Initialize the structures

std::vector<ifm3d::FrameGrabber::Ptr> fgs;

auto im = std::make_shared<ifm3d::StlImageBuffer>();

std::cout << "Available connections:" << std::endl;

for (const auto& port : conf["ports"].items())

{

// Create lists of connected PCIC ports along with types

nlohmann::json::json_pointer p1("/ports/"+port.key()+"/data/pcicTCPPort");

const auto pcic = conf[p1];

nlohmann::json::json_pointer p2("/ports/"+port.key()+"/info/features/type");

const auto type = conf[p2];

//Display connected port with type

std::cout << "Port: " << port.key()

<< "\t PCIC: " << pcic

<< "\t Type: " << type << std::endl;

// Create list of FrameGrabber and ImageBuffer objects for connected ports

auto fg = std::make_shared<ifm3d::FrameGrabber>(cam, ifm3d::DEFAULT_SCHEMA_

→˓MASK, pcic);

fgs.push_back(fg);

}

// Grab frames from each heads

// The timestamp has two parts, the timestamp in seconds and the timestamp in␣

→˓nanoseconds

for (auto fg : fgs)

{

if (! fg->WaitForFrame(im.get(), 3000))

{

std::cerr << "Timeout waiting for camera!" << std::endl;

return -1;

}

std::cout << "Timestamp of frame "

<< std::setw(2) << std::setfill('0')

<< ": " << formatTimestamp(im->TimeStamp())

<< std::endl;

}

return 0;

}

88 Chapter 2. ifm3d library

O3R

2.4 ifm3d - Command Line Tool

2.4.1 Overview

ifm3d ships with a command line tool of the same name. The ifm3d command line tool is
used to both introspect the state of a camera as well as mutate parameters. To carry out
a particular task, you evoke one of the ifm3d subcommands. To get a listing of available
subcommands, you can pass the --help option.

$ ifm3d --help

ifm3d: version=0.20.0

Usage:

ifm3d [<global options>] <command> [<args>]

global options:

-h, --help Produce this help message and exit

--ip arg IP address of the sensor (default: 192.168.0.69)

--xmlrpc-port arg XMLRPC port of the sensor (default: 80)

--password arg Password for establishing an edit-session with the

sensor (default:)

These are common commands used in various situations:

app-types List the application types supported by the sensor.

config Configure sensor settings from a JSON description of

the desired sensor state. See also `dump'.

cp Create a new application on the sensor,

bootstrapped from a copy of an existing one.

discover Discover ifm devices on the network.

dump Serialize the sensor state to JSON.

export Export an application or whole sensor configuration

into a format compatible with ifm Vision Assistant.

hz Compute the actual frequency at which the FrameGrabber

is running.

imager-types List the imager types supported by the sensor.

import Import an application or whole sensor configuration

that is compatible with ifm Vision Assistant's export

format.

jitter Collects statistics on framegrabber (and optionally, image

construction) jitter.

ls Lists the applications currently installed on

the sensor.

passwd Sets the password on the sensor.

(continues on next page)

2.4. ifm3d - Command Line Tool 89

O3R

(continued from previous page)

reboot Reboot the sensor, potentially into recovery

mode (no recovery mode for O3R).

Recovery mode is useful for putting the

sensor into a state where it can be flashed

with new firmware.

reset Reset the sensor to factory defaults.

rm Deletes an application from the sensor.

schema Construct and analyze image acquisition schema masks.

swupdate Perform a firmware update on the camera. Please ensure

that the camera is booted to recovery beforehand.

time Get/set the current time on the camera.

trace Get trace messages from the internal camera trace buffer.

For bug reports, please see:

https://github.com/ifm/ifm3d/issues

As it is reported in the help output above, the ifm3d command line program accepts 1) a
set of global arguments which control the particular platform you wish to communicate with;
2) a subcommand; and 3) arguments to the subcommand. To get a listing of the particular
arguments accepted by a subcommand, you can pass the --help option to the subcommand.
For exemplary purposes, let’s list the options accepted by the cp subcommand.

$ ifm3d cp --help

Usage:

ifm3d [<global options>] cp [<cp options>]

global options:

-h, --help Produce this help message and exit

--ip arg IP address of the sensor (default: 192.168.0.69)

--xmlrpc-port arg XMLRPC port of the sensor (default: 80)

--password arg Password for establishing an edit-session with the

sensor (default:)

cp options:

--index arg Index of source application to copy (default: -1)

As is shown above, cp takes a source application index to copy from. Note that the concept
of applications is deprecated for the O3R platform.

We now walk through a couple of simple examples of using ifm3d. This is not an exhaustive
tutorial on ifm3d but rather intended to give a sense of how to use the tool. The concepts
apply broadly to all of the subcommands.

90 Chapter 2. ifm3d library

O3R

2.4.2 Camera and Imager Configuration

Configuring the parameters of an ifm 3D camera is accomplished in ifm3d in one of two ways:
1) via the ifm3d command line tool; 2) via the ifm3d library’s camera module API. We show
below how to do so with the command line tool. Please refer to the ../examples/o3r/index for
instructions on configuring the camera through ifm3d library.

The primary mechanism for using the ifm3d command line tool to configure an ifm 3D camera
is to utilize the dump and config subcommands to ifm3d. The dump command serializes the
camera state to JSON and prints it to stdout, while the config subcommand consumes (either
from a file or stdin) the same JSON serialization but interprets that JSON as a desired state
for the camera. Said another way, ifm3d config will make a best effort attempt to have the
actual camera hardware reflect the camera state encoded in the JSON stream passed to it.

The remainder of this document will contain a set of examples and associated narrative in
hopes of demonstrating how to leverage ifm3d to configure your 3D camera. For purposes of
this document, an ifm O3D303 will be utilized. However, the techniques shown here apply to
any supported ifm3d camera (e.g., O3X). Additionally, since the camera state is serialized via
JSON, some of the examples below will utilize the jq command line JSON processor to build
up Linux pipelines to carry out a specific task. The usage of jq is not required. Standard
Linux tools (grep, sed, awk, perl, python, etc.) could also be used or a single pipeline can be
decomposed into multiple commands whereby data are serialized to a file, edited, then I/O
redirected into ifm3d config in discrete steps. Again, the remainder of this document will
assume jq is available. (To install jq on Ubuntu: sudo apt-get install jq).

Dump

Serializing the current state of the camera is accomplished through the ifm3d dump com-
mand. Exemplary output is shown below:

O3D example

$ ifm3d dump

{

"ifm3d": {

"Apps": [

{

"Description": "",

"Id": "476707713",

"Imager": {

"AutoExposureMaxExposureTime": "10000",

"AutoExposureReferencePointX": "88",

"AutoExposureReferencePointY": "66",

"AutoExposureReferenceROI": "{\"ROIs\":[{\"id\":0,\"group\":0,\"type\":\

→˓"Rect\",\"width\":130,\"height\":100,\"angle\":0,\"center_x\":88,\"center_y\":66}]}

→˓",

"AutoExposureReferenceType": "0",

"Channel": "0",

"ClippingBottom": "131",

"ClippingCuboid": "{\"XMin\": -3.402823e+38, \"XMax\": 3.402823e+38, \"YMin\

→˓": -3.402823e+38, \"YMax\": 3.402823e+38, \"ZMin\": -3.402823e+38, \"ZMax\": 3.

→˓402823e+38}",

"ClippingLeft": "0",

"ClippingRight": "175",

"ClippingTop": "0",

"ContinuousAutoExposure": "false",
(continues on next page)

2.4. ifm3d - Command Line Tool 91

https://stedolan.github.io/jq/

O3R

(continued from previous page)

"EnableAmplitudeCorrection": "true",

"EnableFastFrequency": "false",

"EnableFilterAmplitudeImage": "true",

"EnableFilterDistanceImage": "true",

"EnableRectificationAmplitudeImage": "false",

"EnableRectificationDistanceImage": "false",

"ExposureTime": "5000",

"ExposureTimeList": "125;5000",

"ExposureTimeRatio": "40",

"FrameRate": "5",

"MaxAllowedLEDFrameRate": "23.2",

"MinimumAmplitude": "42",

"Resolution": "0",

"SpatialFilter": {},

"SpatialFilterType": "0",

"SymmetryThreshold": "0.4",

"TemporalFilter": {},

"TemporalFilterType": "0",

"ThreeFreqMax2FLineDistPercentage": "80",

"ThreeFreqMax3FLineDistPercentage": "80",

"TwoFreqMaxLineDistPercentage": "80",

"Type": "under5m_moderate",

"UseSimpleBinning": "false"

},

"Index": "1",

"LogicGraph": "{\"IOMap\": {\"OUT1\": \"RFT\",\"OUT2\": \"AQUFIN\"},\"blocks\

→˓": {\"B00001\": {\"pos\": {\"x\": 200,\"y\": 200},\"properties\": {},\"type\": \

→˓"PIN_EVENT_IMAGE_ACQUISITION_FINISHED\"},\"B00002\": {\"pos\": {\"x\": 200,\"y\":␣

→˓75},\"properties\": {},\"type\": \"PIN_EVENT_READY_FOR_TRIGGER\"},\"B00003\": {\

→˓"pos\": {\"x\": 600,\"y\": 75},\"properties\": {\"pulse_duration\": 0},\"type\": \

→˓"DIGITAL_OUT1\"},\"B00005\": {\"pos\": {\"x\": 600,\"y\": 200},\"properties\": {\

→˓"pulse_duration\": 0},\"type\": \"DIGITAL_OUT2\"}},\"connectors\": {\"C00000\": {\

→˓"dst\": \"B00003\",\"dstEP\": 0,\"src\": \"B00002\",\"srcEP\": 0},\"C00001\": {\

→˓"dst\": \"B00005\",\"dstEP\": 0,\"src\": \"B00001\",\"srcEP\": 0}}}",

"Name": "Sample Application",

"PcicEipResultSchema": "{ \"layouter\": \"flexible\", \"format\": { \

→˓"dataencoding\": \"binary\", \"order\": \"big\" }, \"elements\" : [{ \"type\": \

→˓"string\", \"value\": \"star\", \"id\": \"start_string\" }, { \"type\": \"records\",

→˓ \"id\": \"models\", \"elements\": [{ \"type\": \"int16\", \"id\": \"boxFound\" },

→˓{ \"type\": \"int16\", \"id\": \"width\", \"format\": { \"scale\": 1000 } }, { \

→˓"type\": \"int16\", \"id\": \"height\", \"format\": { \"scale\": 1000 } }, { \"type\

→˓": \"int16\", \"id\": \"length\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"xMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"yMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"zMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"yawAngle\" }, { \"type\": \"int16\", \"id\": \"qualityLength\" }

→˓, { \"type\": \"int16\", \"id\": \"qualityWidth\" }, { \"type\": \"int16\", \"id\":␣

→˓\"qualityHeight\" }] }, { \"type\": \"string\", \"value\": \"stop\", \"id\": \"end_

→˓string\" }] }",

"PcicPnioResultSchema": "{\"layouter\" : \"flexible\", \"format\": { \

→˓"dataencoding\": \"binary\", \"order\": \"big\" }, \"elements\" : [{ \"type\": \

→˓"string\", \"value\": \"star\", \"id\": \"start_string\" }, { \"type\": \"records\",

→˓ \"id\": \"models\", \"elements\": [{ \"type\": \"int16\", \"id\": \"boxFound\" },

→˓{ \"type\": \"int16\", \"id\": \"width\", \"format\": { \"scale\": 1000 } }, { \

→˓"type\": \"int16\", \"id\": \"height\", \"format\": { \"scale\": 1000 } }, { \"type\

→˓": \"int16\", \"id\": \"length\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"xMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"yMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"zMidTop\", \"format\": { \"scale\": 1000 } }, { \"type\": \

→˓"int16\", \"id\": \"yawAngle\" }, { \"type\": \"int16\", \"id\": \"qualityLength\" }

→˓, { \"type\": \"int16\", \"id\": \"qualityWidth\" }, { \"type\": \"int16\", \"id\":␣

→˓\"qualityHeight\" }] }, { \"type\": \"string\", \"value\": \"stop\", \"id\": \"end_

→˓string\" }] }",

(continues on next page)

92 Chapter 2. ifm3d library

O3R

(continued from previous page)

"PcicTcpResultSchema": "{ \"layouter\": \"flexible\", \"format\": { \

→˓"dataencoding\": \"ascii\" }, \"elements\": [{ \"type\": \"string\", \"value\": \

→˓"star\", \"id\": \"start_string\" }, { \"type\": \"blob\", \"id\": \"normalized_

→˓amplitude_image\" }, { \"type\": \"blob\", \"id\": \"distance_image\" }, { \"type\

→˓": \"blob\", \"id\": \"x_image\" }, { \"type\": \"blob\", \"id\": \"y_image\" }, { \

→˓"type\": \"blob\", \"id\": \"z_image\" }, { \"type\": \"blob\", \"id\": \

→˓"confidence_image\" }, { \"type\": \"blob\", \"id\": \"diagnostic_data\" }, { \

→˓"type\": \"string\", \"value\": \"stop\", \"id\": \"end_string\" }] }",

"TemplateInfo": "",

"TriggerMode": "1",

"Type": "Camera"

}

],

"Device": {

"ActiveApplication": "1",

"ArticleNumber": "O3D303",

"ArticleStatus": "AD",

"Description": "",

"DeviceType": "1:2",

"EnableAcquisitionFinishedPCIC": "false",

"EthernetFieldBus": "0",

"EthernetFieldBusEndianness": "0",

"EvaluationFinishedMinHoldTime": "10",

"ExtrinsicCalibRotX": "0",

"ExtrinsicCalibRotY": "0",

"ExtrinsicCalibRotZ": "0",

"ExtrinsicCalibTransX": "0",

"ExtrinsicCalibTransY": "0",

"ExtrinsicCalibTransZ": "0",

"IODebouncing": "true",

"IOExternApplicationSwitch": "0",

"IOLogicType": "1",

"IPAddressConfig": "0",

"ImageTimestampReference": "1520963818",

"Name": "New sensor",

"OperatingMode": "0",

"PNIODeviceName": "",

"PasswordActivated": "false",

"PcicProtocolVersion": "3",

"PcicTcpPort": "50010",

"SaveRestoreStatsOnApplSwitch": "true",

"ServiceReportFailedBuffer": "15",

"ServiceReportPassedBuffer": "15",

"SessionTimeout": "30",

"TemperatureFront1": "3276.7",

"TemperatureFront2": "3276.7",

"TemperatureIMX6": "40.7179985046387",

"TemperatureIllu": "47.5",

"UpTime": "1.61972222222222"

},

"Net": {

"MACAddress": "00:02:01:40:7D:96",

"NetworkSpeed": "0",

"StaticIPv4Address": "192.168.0.69",

"StaticIPv4Gateway": "192.168.0.201",

"StaticIPv4SubNetMask": "255.255.255.0",

(continues on next page)

2.4. ifm3d - Command Line Tool 93

O3R

(continued from previous page)

"UseDHCP": "false"

},

"Time": {

"CurrentTime": "1520963816",

"NTPServers": "",

"StartingSynchronization": "false",

"Stats": "",

"SynchronizationActivated": "false",

"Syncing": "false",

"WaitSyncTries": "2"

},

"_": {

"Date": "Mon May 7 11:55:08 2018",

"HWInfo": {

"Connector": "#!02_A300_C40_02452814_008023176",

"Diagnose": "#!02_D322_C32_03038544_008023267",

"Frontend": "#!02_F342_C34_17_00049_008023607",

"Illumination": "#!02_I300_001_03106810_008001175",

"MACAddress": "00:02:01:40:7D:96",

"Mainboard": "#!02_M381_003_03181504_008022954",

"MiraSerial": "0e30-59af-0ef7-0244"

},

"SWVersion": {

"Algorithm_Version": "2.0.45",

"Calibration_Device": "00:02:01:40:7d:96",

"Calibration_Version": "0.9.0",

"Diagnostic_Controller": "v1.0.69-9dbc4ca5ef-dirty",

"ELDK": "GOLDENEYE_YOCTO/releases%2FO3D%2FRB_1.20.x-7-

→˓06d9c894636352a6c93711c7284d02b0c794a527",

"IFM_Recovery": "unversioned",

"IFM_Software": "1.20.1138",

"Linux": "Linux version 3.14.34-rt31-yocto-standard-00009-ge4ab4d94f288-dirty␣

→˓(jenkins@dettlx190) (gcc version 4.9.2 (GCC)) #1 SMP PREEMPT RT Tue Mar 13␣

→˓16:06:07 CET 2018",

"Main_Application": "unknown"

},

"ifm3d_version": 900

}

}

}

O3R example

$ ifm3d dump

{

"device": {

"clock": {

"currentTime": 1581108383428570624

},

"diagnostic": {

"temperatures": [],

"upTime": 17739000000000

},

"info": {

"device": "0301",

"deviceTreeBinaryBlob": "tegra186-quill-p3310-1000-c03-00-base.dtb",

(continues on next page)

94 Chapter 2. ifm3d library

O3R

(continued from previous page)

"features": {},

"name": "",

"partNumber": "M03975",

"productionState": "AA",

"serialNumber": "000201234159",

"vendor": "0001"

},

"network": {

"authorized_keys": "",

"ipAddressConfig": 0,

"macEth0": "00:04:4B:EA:9F:35",

"macEth1": "00:02:01:23:41:59",

"networkSpeed": 1000,

"staticIPv4Address": "192.168.0.69",

"staticIPv4Gateway": "192.168.0.201",

"staticIPv4SubNetMask": "255.255.255.0",

"useDHCP": false

},

"state": {

"errorMessage": "",

"errorNumber": ""

},

"swVersion": {

"kernel": "4.9.140-l4t-r32.4+gc35f5eb9d1d9",

"l4t": "r32.4.3",

"os": "0.13.13-221",

"schema": "v0.1.0",

"swu": "0.15.12"

}

},

"ports": {

"port0": {

"acquisition": {

"framerate": 10.0,

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"data": {

"algoDebugConfig": {},

"availablePCICOutput": [],

"pcicTCPPort": 50010

},

"info": {

"device": "2301",

"deviceTreeBinaryBlobOverlay": "001-ov9782.dtbo",

"features": {

"fov": {

"horizontal": 127,

"vertical": 80

},

"resolution": {

"height": 800,

"width": 1280

(continues on next page)

2.4. ifm3d - Command Line Tool 95

O3R

(continued from previous page)

},

"type": "2D"

},

"name": "",

"partNumber": "M03933",

"productionState": "AA",

"sensor": "OV9782",

"sensorID": "OV9782_127x80_noIllu_Csample",

"serialNumber": "000000000280",

"vendor": "0001"

},

"mode": "experimental_autoexposure2D",

"processing": {

"extrinsicHeadToUser": {

"rotX": 0.0,

"rotY": 0.0,

"rotZ": 0.0,

"transX": 0.0,

"transY": 0.0,

"transZ": 0.0

},

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"state": "RUN"

},

"port2": {

"acquisition": {

"exposureLong": 5000,

"exposureShort": 400,

"framerate": 10.0,

"offset": 0.0,

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"data": {

"algoDebugConfig": {},

"availablePCICOutput": [],

"pcicTCPPort": 50012

},

"info": {

"device": "3101",

"deviceTreeBinaryBlobOverlay": "001-irs2381c.dtbo",

"features": {

"fov": {

"horizontal": 60,

"vertical": 45

},

"resolution": {

"height": 172,

(continues on next page)

96 Chapter 2. ifm3d library

O3R

(continued from previous page)

"width": 224

},

"type": "3D"

},

"name": "",

"partNumber": "M03933",

"productionState": "AA",

"sensor": "IRS2381C",

"sensorID": "IRS2381C_60x45_4x2W_60x45_C2",

"serialNumber": "000000000280",

"vendor": "0001"

},

"mode": "standard_range4m",

"processing": {

"diParam": {

"anfFilterSizeDiv2": 2,

"enableDynamicSymmetry": true,

"enableStraylight": true,

"enableTemporalFilter": true,

"excessiveCorrectionThreshAmp": 0.3,

"excessiveCorrectionThreshDist": 0.08,

"maxDistNoise": 0.02,

"maxSymmetry": 0.4,

"medianSizeDiv2": 0,

"minAmplitude": 20.0,

"minReflectivity": 0.0,

"mixedPixelFilterMode": 1,

"mixedPixelThresholdRad": 0.15

},

"extrinsicHeadToUser": {

"rotX": 0.0,

"rotY": 0.0,

"rotZ": 0.0,

"transX": 0.0,

"transY": 0.0,

"transZ": 0.0

},

"version": {

"major": 0,

"minor": 0,

"patch": 0

}

},

"state": "RUN"

}

}

}

In the example above, we serialize the entire state of the camera. This is useful to, for exam-
ple, save to a file, edit, and push out to one or more cameras. However, sometimes we need
to look at the camera configuration to simply answer a question we may have. For example,
if we wanted to see which version of the firmware the camera is running we could issue the
following command.

$ ifm3d dump | jq .ifm3d._.SWVersion.IFM_Software

"1.20.1138"

2.4. ifm3d - Command Line Tool 97

O3R

It follows that the entire JSON serialized configuration may be further processed either pro-
grammatically or manually via a text editor.

Config

Mutating parameters on the camera is done by creating a desired camera state encoded in
JSON compliant to the output produced by ifm3d dump. For example, if we wanted to change
the framerate of the first application on the camera we could do the following.

1. Before changing the framerate, let’s see what it is currently set to:

(NOTE: This step is not necessary. We do this to illustrate the state of the camera prior to
mutating the parameter).

$ ifm3d dump | jq .ifm3d.Apps[0].Imager.FrameRate

"5"

We see the current framerate is 5 fps.

1. Let’s set it to 10 fps:

$ ifm3d dump | jq '.ifm3d.Apps[0].Imager.FrameRate="10"' | ifm3d config

1. Let’s check to make sure that our configuration has persisted.

$ ifm3d dump | jq .ifm3d.Apps[0].Imager.FrameRate

"10"

Let’s now break down what we did in this single Linux pipeline.

$ ifm3d dump | jq '.ifm3d.Apps[0].Imager.FrameRate="10"' | ifm3d config

First we dump the entire state of the camera to JSON, process the JSON in-line via jq to set
the FrameRate to 10 fps, then pipe the resulting output to ifm3d config which accepts the
new (mutated) JSON stream on stdin and carries out the necessary network calls to mutate
the camera settings and persist them.

This is the basic paradigm that can be followed to tune just about any parameter on the
camera. To carry out more complex configuration tasks (e.g., changing several parameters
at once), the dump can be saved to a file, edited via a text editor, then fed into ifm3d config
to perform the configuration. It is also important to point out that ifm3d config does not
need the entire ifm3d JSON object to operate correctly. Snippets are valid. For example, if
we wanted to set the framerate back to 5, we could do this:

$ echo '{"Apps":[{"Index":"1","Imager":{"FrameRate":"5"}}]}' | ifm3d config

Let’s validate that it worked:

$ ifm3d dump | jq .ifm3d.Apps[0].Imager.FrameRate

"5"

In summary, the primary concept in configuring your camera via ifm3d is that the dump sub-
command can be used to access the current camera state while the config subcommand is
used to declare and mutate the camera into a desired state – assuming the desired state is
valid.

98 Chapter 2. ifm3d library

O3R

2.4.3 Examples

Creating new applications

Let’s first list the applications on the camera.

$ ifm3d ls

[

{

"Active": true,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

}

]

Now, let’s create a new application whose settings will be bootstrapped from the application
at index 1.

$ ifm3d cp --index=1

$ ifm3d ls

[

{

"Active": true,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

},

{

"Active": false,

"Description": "",

"Id": 476707714,

"Index": 2,

"Name": "Sample Application"

}

]

Now, let’s create a new application from scratch (bootstrapped with camera-default settings).

$ echo '{"Apps":[{}]}' | ifm3d config

$ ifm3d ls

[

{

"Active": true,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

},

{

"Active": false,

"Description": "",

"Id": 476707714,

(continues on next page)

2.4. ifm3d - Command Line Tool 99

O3R

(continued from previous page)

"Index": 2,

"Name": "Sample Application"

},

{

"Active": false,

"Description": "",

"Id": 1755226334,

"Index": 3,

"Name": "New application"

}

]

Now, let’s set the application at index 3 to be the current active application.

$ ifm3d dump | jq '.ifm3d.Device.ActiveApplication="3"' | ifm3d config

$ $ ifm3d ls

[

{

"Active": false,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

},

{

"Active": false,

"Description": "",

"Id": 476707714,

"Index": 2,

"Name": "Sample Application"

},

{

"Active": true,

"Description": "",

"Id": 1755226334,

"Index": 3,

"Name": "New application"

}

]

Now, let’s delete applications 2 and 3.

$ ifm3d rm --index=2

$ ifm3d rm --index=3

$ ifm3d ls

[

{

"Active": false,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

}

]

We note that based on the sequence of steps we took in this example, we are currently left
with a camera with only a single application but it is not marked as active. So, let’s set that

100 Chapter 2. ifm3d library

O3R

application as “active” and validate it.

$ ifm3d dump | jq '.ifm3d.Device.ActiveApplication="1"' | ifm3d config

$ ifm3d ls

[

{

"Active": true,

"Description": "",

"Id": 476707713,

"Index": 1,

"Name": "Sample Application"

}

]

Setting NTP-Server connection on the camera

Using jq, you can set easily the NTP-Server on a camera. You just need to provide the right
IP address. In this case, the IP: 192.168.0.100 is the NTP server.

ifm3d dump | jq '.ifm3d.Time.NTPServers="192.168.0.100"' | ifm3d config

After that, we need to activate the usage of the NTP server too.

ifm3d dump | jq '.ifm3d.Time.SynchronizationActivated="True"' | ifm3d config

Setting the time on the camera

To set the time on the camera we use the time subcommand. Let’s look at its usage.

$ ifm3d time --help

Usage:

ifm3d [<global options>] time [<time options>]

global options:

-h, --help Produce this help message and exit

--ip arg IP address of the sensor (default: 192.168.0.69)

--xmlrpc-port arg XMLRPC port of the sensor (default: 80)

--password arg Password for establishing an edit-session with the

sensor (default:)

time options:

--epoch arg Secs since Unix epoch encoding time to be set on camera

(-1 == now)

To simply see the current time on the camera, we can issue the time subcommand with no
arguments.

$ ifm3d time

Local time on camera is: Tue Mar 13 18:22:16 2018

2.4. ifm3d - Command Line Tool 101

O3R

Let’s now look at our local Unix time:

$ date

Mon May 7 16:20:49 EDT 2018

To synchronize the camera to our local time we can issue the following command.

$ ifm3d time --epoch=-1

Local time on camera is: Mon May 7 16:21:44 2018

And, double checking…

$ ifm3d time

Local time on camera is: Mon May 7 16:22:09 2018

2.5 Python API Reference

2.5.1 ifm3dpy Module

Bindings for the ifm3d Camera Library

102 Chapter 2. ifm3d library

O3R

Variables

__version__ The ifm3d version.

__package__ The ifm3d package.

DEFAULT_IP The default IP to connect to.

DEFAULT_XMLRPC_PORT The default XMLRPC port.

DEFAULT_PASSWORD The default password.

DEFAULT_SCHEMA_MASK The default pcic schema mask.

IMG_RDIS Pcic schema constant for the radial distance im-
age.

IMG_AMP Pcic schema constant for the normalized ampli-
tude image.

IMG_RAMP Pcic schema constant for the raw amplitude im-
age.

IMG_CART Pcic schema constant for the cartesian image.

IMG_UVEC Pcic schema constant for the wrapped unit vec-
tors.

EXP_TIME Pcic schema constant for the amplitude image.

IMG_GRAY Pcic schema constant for the wrapped ambient
light image.

ILLU_TEMP Pcic schema constant for the illu temp.

INTR_CAL Pcic schema constant for the intrinsic calibra-
tion.

INV_INTR_CAL Pcic schema constant for the inverse intrinsic
calibration.

JSON_MODEL Pcic schema constant for the json model.

O3D_TIME_SUPPORT_MAJOR Constant for querying for O3D time support.

O3D_TIME_SUPPORT_MINOR Constant for querying for O3D time support.

O3D_TIME_SUPPORT_PATCH Constant for querying for O3D time support.

O3D_TMP_PARAMS_SUPPORT_MAJOR Constant for querying for O3D temporary pa-
rameter support.

O3D_TMP_PARAMS_SUPPORT_MINOR Constant for querying for O3D temporary pa-
rameter support.

O3D_TMP_PARAMS_SUPPORT_PATCH Constant for querying for O3D temporary pa-
rameter support.

O3D_INTRINSIC_PARAM_SUP-
PORT_MAJOR

Constant for querying for O3D intrinsic parame-
ter support.

O3D_INTRINSIC_PARAM_SUP-
PORT_MINOR

Constant for querying for O3D intrinsic parame-
ter support.

O3D_INTRINSIC_PARAM_SUP-
PORT_PATCH

Constant for querying for O3D intrinsic parame-
ter support.

O3D_INVERSE_INTRIN-
SIC_PARAM_SUPPORT_MAJOR

Constant for querying for O3D inverse intrinsic
parameter support.

O3D_INVERSE_INTRIN-
SIC_PARAM_SUPPORT_MINOR

Constant for querying for O3D inverse intrinsic
parameter support.

O3D_INVERSE_INTRIN-
SIC_PARAM_SUPPORT_PATCH

Constant for querying for O3D inverse intrinsic
parameter support.

2.5. Python API Reference 103

O3R

Classes

Camera Class for managing an instance of an
O3D/O3X Camera

CameraBase Base class for managing an instance of an
all cameras

FrameGrabber Implements a TCP FrameGrabber con-
nected to a provided Camera

ImageBuffer Class which holds a validated image buffer
from the sensor that represents a single
time-synchronized set of images based on
the current schema mask set on the active
framegrabber.

O3RCamera Class for managing an instance of an O3R
Camera

Camera

class ifm3dpy.Camera
Bases: ifm3dpy.CameraBase

Class for managing an instance of an O3D/O3X Camera

Attributes Summary

password The password associated with this Cam-
era instance

session_id Retrieves the active session ID

Methods Summary

active_application(self) Returns the index of the active applica-
tion.

application_list(self) Delivers basic information about all appli-
cations stored on the device.

application_types(self) Lists the valid application types sup-
ported by the sensor.

cancel_session(*args, **kwargs) Overloaded function.

copy_application(self, idx) Creates a new application by copying the
configuration of another application.

create_application(self[, type]) Creates a new application on the camera
of the given type.

delete_application(self, idx) Deletes the application at the specified in-
dex from the sensor.

export_ifm_app(self, idx) Export the application at the specified in-
dex into a byte array suitable for writing
to a file.

continues on next page

104 Chapter 2. ifm3d library

O3R

Table 3 – continued from previous page

export_ifm_config(self) Exports the entire camera configuration
in a format compatible with Vision Assis-
tant.

factory_reset(self) Sets the camera configuration back to the
state in which it shipped from the ifm fac-
tory.

heartbeat(self, hb) Sends a heartbeat message and sets the
next heartbeat interval

imager_types(self) Lists the valid imager types supported by
the sensor.

import_ifm_app(self, bytes) Import the IFM-encoded application.

import_ifm_config(self, bytes[, flags]) Imports the entire camera configuration
in a format compatible with Vision Assis-
tant.

request_session(self) Requests an edit-mode session with the
camera.

set_current_time(self[, epoch_secs]) Sets the current time on the camera

set_temporary_application_parame-
ters(self, ...)

Sets temporary application parameters in
run mode.

unit_vectors(self) For cameras that support fetching the
Unit Vectors over XML-RPC, this function
will return those data as a binary blob.

Attributes Documentation

password
The password associated with this Camera instance

session_id
Retrieves the active session ID

Methods Documentation

active_application(self: ifm3dpy.Camera) → int
Returns the index of the active application.

A negative number indicates no application is marked as active on the sensor.

application_list(self: ifm3dpy.Camera) → object
Delivers basic information about all applications stored on the device. A call to this
function does not require establishing a session with the camera.

The returned information is encoded as an array of JSON objects. Each object in the
array is basically a dictionary with the following keys: ‘index’, ‘id’, ‘name’, ‘descrip-
tion’, ‘active’

dict A JSON encoding of the application information

RuntimeError

application_types(self: ifm3dpy.Camera) → List[str]
Lists the valid application types supported by the sensor.

2.5. Python API Reference 105

O3R

list[str] List of strings of the available types of applications supported by the sensor.
Each element in the list is a string suitable to passing to ‘CreateApplication’.

RuntimeError

cancel_session(*args, **kwargs)
Overloaded function.

1. cancel_session(self: ifm3dpy.Camera) -> bool

Explictly stops the current session with the sensor.

bool Indicates success or failure. On failure, check the ifm3d system log
for details.

2. cancel_session(self: ifm3dpy.Camera, sid: str) -> bool

Attempts to cancel a session with a particular session id.

sid [str] Session ID to cancel.

bool Indicates success or failure. On failure, check the ifm3d system log
for details.

copy_application(self: ifm3dpy.Camera, idx: int) → int
Creates a new application by copying the configuration of another application. The
device will generate an ID for the new application and put it on a free index.

idx [int] The index of the application to copy

int Index of the new application

RuntimeError

create_application(self: ifm3dpy.Camera, type: str = 'Camera') → int
Creates a new application on the camera of the given type.

To figure out valid type`s, you should call the AvailableApplicationTypes() method.

Upon creation of the application, the embedded device will initialize all parameters
as necessary based on the type. However, based on the type, the application may
not be in an _activatable_ state. That is, it can be created and saved on the device,
but it cannot be marked as active.

type [str, optional] The (optional) application type to create. By default, it will cre-
ate a new “Camera” application.

int The index of the new application.

delete_application(self: ifm3dpy.Camera, idx: int) → None
Deletes the application at the specified index from the sensor.

idx [int] The index of the application to delete

RuntimeError

export_ifm_app(self: ifm3dpy.Camera, idx: int) → List[int]
Export the application at the specified index into a byte array suitable for writing to
a file. The exported bytes represent the ifm serialization of an application.

This function provides compatibility with tools like IFM’s Vision Assistant.

idx [int] The index of the application to export.

106 Chapter 2. ifm3d library

O3R

list[int] A list of bytes representing the IFM serialization of the exported applica-
tion.

RuntimeError

export_ifm_config(self: ifm3dpy.Camera) → List[int]
Exports the entire camera configuration in a format compatible with Vision Assis-
tant.

list[int]

factory_reset(self: ifm3dpy.Camera) → None
Sets the camera configuration back to the state in which it shipped from the ifm
factory.

heartbeat(self: ifm3dpy.Camera, hb: int) → int
Sends a heartbeat message and sets the next heartbeat interval

Heartbeat messages are used to keep a session with the sensor alive. This function
sends a heartbeat message to the sensor and sets when the next heartbeat message
is required.

hb [int] The time (seconds) of when the next heartbeat message will be required.

int The current timeout interval in seconds for heartbeat messages

RuntimeError

imager_types(self: ifm3dpy.Camera) → List[str]
Lists the valid imager types supported by the sensor.

list[str] List of strings of the available imager types supported by the sensor

RuntimeError

import_ifm_app(self: ifm3dpy.Camera, bytes: List[int]) → int
Import the IFM-encoded application.

This function provides compatibility with tools like IFM’s Vision Assistant. An appli-
cation configuration exported from VA, can be imported using this function.

bytes [list[int]] The raw bytes from the zip’d JSON file. NOTE: This function will
base64 encode the data for tranmission over XML-RPC.

int The index of the imported application.

import_ifm_config(self: ifm3dpy.Camera, bytes: List[int], flags: int = 0) → None
Imports the entire camera configuration in a format compatible with Vision Assis-
tant.

bytes [list[int]] The camera configuration, serialized in the ifm format

flags : int

request_session(self: ifm3dpy.Camera) → str
Requests an edit-mode session with the camera.

In order to (permanently) mutate parameters on the camera, an edit session needs
to be established. Only a single edit sesson may be established at any one time with
the camera (think of it as a global mutex on the camera state – except if you ask for
the mutex and it is already taken, an exception will be thrown).

2.5. Python API Reference 107

O3R

Most typical use-cases for end-users will not involve establishing an edit-session with
the camera. Tomutate camera parameters, the FromJSON family of functions should
be used, which, under-the-hood, on the user’s behalf, will establish the edit session
and gracefully close it. There is an exception. For users who plan to modulate im-
ager parameters (temporary parameters) on the fly while running the framegrabber,
managing the session manually is necessary. For this reason, we expose this method
in the public Camera interface.

NOTE: The session timeout is implicitly set to ifm3d::MAX_HEARTBEAT after the
session has been successfully established.

str The session id issued or accepted by the camera (see IFM3D_SESSION_ID en-
vironment variable)

RuntimeError

@throws ifm3d::error_t if an error is encountered.

set_current_time(self: ifm3dpy.Camera, epoch_secs: int = - 1) → None
Sets the current time on the camera

epoch_secs [int, optional] Time since the Unix epoch in seconds. A value less than
0 will implicity set the time to the current system time.

set_temporary_application_parameters(self: ifm3dpy.Camera, params: Dict[str,
str]) → None

Sets temporary application parameters in run mode.

The changes are not persistent and are lost when entering edit mode or turning the
device off. The parameters “ExposureTime” and “ExposureTimeRatio” of the imager
configuration are supported. All additional parameters are ignored (for now). Ex-
posure times are clamped to their allowed range, depending on the exposure mode.
The user must provide the complete set of parameters depending on the exposure
mode, i.e., “ExposureTime” only for single exposure modes and both “Exposure-
Time” and “ExposureTimeRatio” for double exposure modes. Otherwise, behavior
is undefined.

params [dict[str, str]] The parameters to set on the camera.

RuntimeError

unit_vectors(self: ifm3dpy.Camera) → List[int]
For cameras that support fetching the Unit Vectors over XML-RPC, this function will
return those data as a binary blob.

list[int]

CameraBase

class ifm3dpy.CameraBase
Bases: pybind11_builtins.pybind11_object

Base class for managing an instance of an all cameras

108 Chapter 2. ifm3d library

O3R

Attributes Summary

ip The IP address associated with this Cam-
era instance

xmlrpc_port The XMLRPC port associated with this
Camera instance

Methods Summary

am_i(self, family) Checking whether a device is one of the
specified device family

check_minimum_firmware_version(self,
major, ...)

Checks for a minimum ifm camera soft-
ware version

device_parameter(self, key) Convenience accessor for extracting a de-
vice parameter

device_type(self[, use_cached]) Obtains the device type of the connected
camera.

force_trigger(self) Sends a S/W trigger to the camera over
XMLRPC.

from_json(self, json) Configures the camera based on the pa-
rameter values of the passed in JSON.

reboot(self, mode) Reboot the sensor

to_json(self) A JSON object containing the state of the
camera

trace_logs(self, count) Delivers the trace log from the camera

who_am_i(self) Retrieve the device family of the con-
nected device

Attributes Documentation

ip
The IP address associated with this Camera instance

xmlrpc_port
The XMLRPC port associated with this Camera instance

Methods Documentation

am_i(self: ifm3dpy.CameraBase, family: ifm3dpy.CameraBase.device_family) → bool
Checking whether a device is one of the specified device family

family [CameraBase.device_family] The family to check for

bool True if the device is of the specified family

check_minimum_firmware_version(self: ifm3dpy.CameraBase, major: int, minor: int,
patch: int) → bool

Checks for a minimum ifm camera software version

major [int] Major version of software

2.5. Python API Reference 109

O3R

minor [int] Minor Version of software

patch [int] Patch Number of software

bool True if current software version is greater or equal to the value passed

device_parameter(self: ifm3dpy.CameraBase, key: str) → str
Convenience accessor for extracting a device parameter

No edit session is created on the camera

key [str] Name of the parameter to extract

str Value of the requested parameter

RuntimeError

device_type(self: ifm3dpy.CameraBase, use_cached: bool = True) → str
Obtains the device type of the connected camera.

This is a convenience function for extracting out the device type of the connected
camera. The primary intention of this function is for internal usage (i.e., to trigger
conditional logic based on the model hardware we are talking to) however, it will
likely be useful in application-level logic as well, so, it is available in the public
interface.

use_cached [bool] If set to true, a cached lookup of the device type will be used as
the return value. If false, it will make a network call to the camera to get the
“real” device type. The only reason for setting this to false would be if you expect
over the lifetime of your camera instance that you will swap out (for example) an
O3D for an O3X (or vice versa) – literally, swapping out the network cables while
an object instance is still alive. If that is not something you are worried about,
leaving this set to true should result in a signficant performance increase.

str Type of device connected

force_trigger(self: ifm3dpy.CameraBase) → None
Sends a S/W trigger to the camera over XMLRPC.

The O3X does not S/W trigger over PCIC, so, this function has been developed spec-
ficially for it. For the O3D, this is a NOOP.

from_json(self: ifm3dpy.CameraBase, json: dict) → None
Configures the camera based on the parameter values of the passed in JSON. This
function is _the_ way to tune the camera/application/imager/etc. parameters.

json [dict] A json object encoding a camera configuration to apply to the hardware.

RuntimeError If this raises an exception, you are encouraged to check the log file
as a best effort is made to be as descriptive as possible as to the specific error
that has occured.

reboot(self: ifm3dpy.CameraBase, mode: ifm3dpy.CameraBase.boot_mode =
<boot_mode.PRODUCTIVE: 0>) → None

Reboot the sensor

mode [CameraBase.boot_mode] The system mode to boot into upon restart of the
sensor

110 Chapter 2. ifm3d library

O3R

RuntimeError

to_json(self: ifm3dpy.CameraBase) → object
A JSON object containing the state of the camera

dict Camera JSON, compatible with python’s json module

RuntimeError

trace_logs(self: ifm3dpy.CameraBase, count: int) → List[str]
Delivers the trace log from the camera

A session is not required to call this function.

count [int] Number of entries to retrieve

list[str] List of strings for each entry in the tracelog

who_am_i(self: ifm3dpy.CameraBase) → ifm3dpy.CameraBase.device_family
Retrieve the device family of the connected device

CameraBase.device_family The device family

FrameGrabber

class ifm3dpy.FrameGrabber
Bases: pybind11_builtins.pybind11_object

Implements a TCP FrameGrabber connected to a provided Camera

Methods Summary

reset(self, cam, mask, pcic_port) Resets the FrameGrabber with a new
camera/bitmask

sw_trigger(self) Triggers the camera for image acquisition

wait_for_frame(self, buff[, timeout_mil-
lis, ...])

This function is used to grab and parse out
time synchronized image data from the
camera.

Methods Documentation

reset(self: ifm3dpy.FrameGrabber, cam: ifm3d::CameraBase, mask: int = 10,
pcic_port: int = 0) → None

Resets the FrameGrabber with a new camera/bitmask

cam [ifm3dpy.Camera] The camera instance to grab frames from.

mask [uint16] A bitmask encoding the image acquisition schema to stream in from
the camera.

pcic_port [uint16] The PCIC port

sw_trigger(self: ifm3dpy.FrameGrabber) → None
Triggers the camera for image acquisition

2.5. Python API Reference 111

O3R

You should be sure to set the TriggerMode for your application to SW in order for
this to be effective. This function simply does the triggering, data are still received
asynchronously via WaitForFrame().

Calling this function when the camera is not in SW trigger mode or on a device
that does not support software-trigger should result in a NOOP and no error will
be returned (no exceptions thrown). However, we do not recommend calling this
function in a tight framegrabbing loop when you know it is not needed. The “cost”
of the NOOP is undefined and incurring it is not recommended.

wait_for_frame(self: ifm3dpy.FrameGrabber, buff: ifm3dpy.ImageBuffer,
timeout_millis: int = 0, copy_buff: bool = False, organize: bool =
True) → bool

This function is used to grab and parse out time synchronized image data from the
camera.

buff [ifm3dpy.FrameBuffer] A FrameBuffer object to update with the latest data
from the camera.

timeout_millis [int] Timeout in millis to wait for new image data from the
FrameGrabber. If timeout_millis is set to 0, this function will block indefinitely.

copy_buff [bool] Flag indicating whether the framegrabber’s internal buffer should
be copied (O(n)) or swapped (O(1)) with the raw bytes of the passed in buff. You
should only flag this as true if you are planning to use multiple clients with a
single FrameGrabber – even then, think carefully before copying data around.

organize [bool] Flag indicating whether or not Organize should be called on the
ByteBuffer before returning, or whether it should be deferred until the data is
accessed.

bool True if a new buffer was acquired w/in “timeout_millis”, false otherwise.

ImageBuffer

class ifm3dpy.ImageBuffer
Bases: pybind11_builtins.pybind11_object

Class which holds a validated image buffer from the sensor that represents a single
time-synchronized set of images based on the current schema mask set on the active
framegrabber.

Methods Summary

amplitude_image(self) Retrieves the amplitude image

confidence_image(self) Retrieves the confidence image

distance_image(self) Retrieves the radial distance image

exposure_times(self) Returns the exposure times for the cur-
rent frame.

extrinsics(self) Returns a 6-element vector containing the
extrinsic calibration of the camera.

gray_image(self) Retrieves the gray image

continues on next page

112 Chapter 2. ifm3d library

O3R

Table 7 – continued from previous page

illu_temp(self) Returns the temperature of the illumina-
tion unit.

intrinsics(self) Retrieves the intrinsic calibration of the
camera

inverse_intrinsics(self) Retrieves the inverse intrinsic calibration
of the camera.

jpeg_image(self) Retrieves the jpeg encoded 2d image

json_model(self) Returns the JSON model of the output of
the active application

organize(self) This is the interface hook that synchro-
nizes the internally wrapped byte buffer
with the semantically meaningful im-
age/cloud data structures.

raw_amplitude_image(self) Retrieves the raw amplitude image

timestamp(self) Returns the time stamp of the image data.

unit_vectors(self) Retrieves the unit vector image

xyz_image(self) Retrieves the xyz image (cartesian point
cloud)

Methods Documentation

amplitude_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the amplitude image

numpy.ndarray Image organized on the pixel array [rows, cols]

confidence_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the confidence image

numpy.ndarray Image organized on the pixel array [rows, cols]

distance_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the radial distance image

numpy.ndarray Image organized on the pixel array [rows, cols]

exposure_times(self: ifm3dpy.ImageBuffer) → List[int]
Returns the exposure times for the current frame.

list[int] A 3-element vector containing the exposure times (usec) for the current
frame. Unused exposure times are reported as 0.

If all elements are reported as 0 either the exposure times are not configured
to be returned back in the data stream from the camera or an error in parsing
them has occured.

extrinsics(self: ifm3dpy.ImageBuffer) → List[float]
Returns a 6-element vector containing the extrinsic calibration of the camera.
NOTE: This is the extrinsics WRT to the ifm optical frame.

The elements are: tx, ty, tz, rot_x, rot_y, rot_z

Translation units are mm, rotations are degrees

Users of this library are highly DISCOURAGED from using the extrinsic calibration
data stored on the camera itself.

2.5. Python API Reference 113

O3R

gray_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the gray image

numpy.ndarray Image organized on the pixel array [rows, cols]

illu_temp(self: ifm3dpy.ImageBuffer) → float
Returns the temperature of the illumination unit.

NOTE: To get the temperature of the illumination unit to the frame, you need to
make sure your current pcic schema asks for it.

float The temperature of the illumination unit

intrinsics(self: ifm3dpy.ImageBuffer) → List[float]
Retrieves the intrinsic calibration of the camera

list[float] 16-element list containing the intrinsic calibration of the camera The el-
ements are:

Name Unit Description fx px Focal length of the camera in the sensor’s x axis
direction. fy px Focal length of the camera in the sensor’s y axis direction. mx px
Main point in the sensor’s x direction my pxMain point in the sensor’s y direction
alpha dimensionless Skew parameter k1 dimensionless First radial distortion co-
efficient k2 dimensionless Second radial distortion coefficient k5 dimensionless
Third radial distortion coefficient k3 dimensionless First tangential distortion
coefficient k4 dimensionless Second tangential distortion coefficient transX mm
Translation along x-direction in meters. transY mm Translation along y-direction
in meters. transZ mm Translation along z-direction in meters. rotX float degree
Rotation along x-axis in radians. Positive values indicate clockwise rotation. rotY
float degree Rotation along y-axis in radians. Positive values indicate clockwise
rotation. rotZ float degree Rotation along z-axis in radians. Positive values indi-
cate clockwise rotation.

inverse_intrinsics(self: ifm3dpy.ImageBuffer) → List[float]
Retrieves the inverse intrinsic calibration of the camera. See the documentation for
ifm3dpy.intrinsics for details on contents.

jpeg_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the jpeg encoded 2d image

numpy.ndarray Jpeg encoded image data

json_model(self: ifm3dpy.ImageBuffer) → object
Returns the JSON model of the output of the active application

NOTE: To get the JSON data for the application running on the device, you need to
make sure your current pcic schema asks for it by including ifm3d::JSON_MODEL
in the schema. This will return an empty dict for Camera devices like the O3D303,
versus ifm Smart Sensors like the O3D302.

dict A JSON encoding of the model

organize(self: ifm3dpy.ImageBuffer) → None
This is the interface hook that synchronizes the internally wrapped byte buffer with
the semantically meaningful image/cloud data structures. Within the overall ifm3d
framework, this function is called by the FrameGrabber when a complete “frame
packet” has been recieved. This then parses the bytes and, in-line, will statically
dispatch to the underly dervied class to populate their image/cloud data structures.

Additionally, this function will populate the extrinsics, exposure times, timestamp,
and illumination temperature as appropriate and subject to the current pcic schema.

114 Chapter 2. ifm3d library

O3R

NOTE: This function is called automatically as needed the first time frame data are
accessed.

raw_amplitude_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the raw amplitude image

numpy.ndarray Image organized on the pixel array [rows, cols]

timestamp(self: ifm3dpy.ImageBuffer) → datetime.datetime
Returns the time stamp of the image data.

NOTE: To get the timestamp of the confidence data, you need to make sure your
current pcic schema mask have enabled confidence data.

datetime.datetime

unit_vectors(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the unit vector image

numpy.ndarray Image organized on the pixel array [rows, cols]

xyz_image(self: ifm3dpy.ImageBuffer) → numpy.ndarray
Retrieves the xyz image (cartesian point cloud)

numpy.ndarray nxmx3 Image organized on the pixel array [rows, cols,
chans(x,y,z)]

O3RCamera

class ifm3dpy.O3RCamera
Bases: ifm3dpy.CameraBase

Class for managing an instance of an O3R Camera

Methods Summary

factory_reset(self, keep_network_set-
tings)

Sets the camera configuration back to the
state in which it shipped from the ifm fac-
tory.

get(self[, path]) Returns the configuration formatted as
JSON based on a path.

get_init(self) Return the initial JSON configuration.

get_init_status(self) Returns the init status of the device

get_schema(self) Returns the current JSON schema config-
uration

lock(self, password) Release the lock from the Device

save_init(self) Save to current temporary JSON configu-
ration as initial JSON configuration

set(self, json) Overwrites parts of the temporary JSON
configuration which is achieved by merg-
ing the provided JSON fragment with the
current temporary JSON.

unlock(self, password) Locks the device until it is unlocked.

2.5. Python API Reference 115

O3R

Methods Documentation

factory_reset(self: ifm3dpy.O3RCamera, keep_network_settings: bool) → None
Sets the camera configuration back to the state in which it shipped from the ifm
factory.

keep_network_settings [bool] A bool indicating wether to keep the current net-
work settings

get(self: ifm3dpy.O3RCamera, path: List[str] = []) → object
Returns the configuration formatted as JSON based on a path. If the path is empty,
returns the whole configuration.

dict The JSON configuration for the list of object path fragments

get_init(self: ifm3dpy.O3RCamera) → object
Return the initial JSON configuration.

dict The initial JSON configuration

get_init_status(self: ifm3dpy.O3RCamera) → str
Returns the init status of the device

dict The init status of the device

get_schema(self: ifm3dpy.O3RCamera) → object
Returns the current JSON schema configuration

dict The current json schema configuration

lock(self: ifm3dpy.O3RCamera, password: str) → None
Release the lock from the Device

string The password used to unlock the device

save_init(self: ifm3dpy.O3RCamera) → None
Save to current temporary JSON configuration as initial JSON configuration

set(self: ifm3dpy.O3RCamera, json: dict) → None
Overwrites parts of the temporary JSON configuration which is achieved by merging
the provided JSON fragment with the current temporary JSON.

json [dict] The new temporay JSON configuration of the device.

unlock(self: ifm3dpy.O3RCamera, password: str) → None
Locks the device until it is unlocked. If the device is unlocked and an empty password
is provided the password protection is removed.

string The password used to lock the device

2.6 C++ API Reference

C++ documentation has been disabled

116 Chapter 2. ifm3d library

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

117

O3R

118 Chapter 3. Indices and tables

CHAPTER

FOUR

ROS WRAPPERS FOR IFM3D

4.1 ifm3d-ros

4.1.1 ifm3d-ros

Release versions

:warning: Note that the v1.0.x branch is generally in a work in progress state, and you
probably want to use a tagged release version for production.

ifm3d-ros for the O3R

NOTE: The ifm3d-ros package has had major changes recently. Please be aware that
this might cause problems on your system for building pipelines based on our old
build instructions.We tried to ensure backward compatibility where ever possible. If you
find any major breaks, please let us know.

ifm3d-ros is a wrapper around ifm3d enabling the usage of the O3R camera platform (ifm ToF
cameras) from within ROS software systems. Please make sure to use the v1.0.x branch for
O3R compatibility.

119

https://github.com/ifm/ifm3d-ros/releases
https://github.com/ifm/ifm3d/
http://ros.org

O3R

Software Compatibility Matrix

ifm3d-ros ver-
sion

ifm3d version ROS distribu-
tion(s)

1.0.0 in development - latest version checked
0.91.0

Noetic

Internal ifm3d-ros subpackage version structure

Please see the internal subpackage version structure for a known ifm3d-ros version.

ifm3d-ros version ifm3d_ros_driver ifm3d_ros_msgs ifm3d_ros_examples

1.0.0 0.7.0 0.1.0 0.1.0

Organization of the software

The ifm3d-ros meta package provides three subpackages:

• ifm3d_ros_driver provides the core interface for receiving data for ifm 3d (O3R) cam-
eras.

• ifm3d_ros_msgs gathers the ifm-specificmessages types and the services for configuring
and triggering the camera.

• ifm3d_ros_examples provides additional helper scripts and examples.

The name ifm3d-ros was kept even tough this is not consistent with ROS package naming
conventions.This ROS package has been split into three sub packages in an effort to facili-
tate dependency handling on distributed systems and simplify deployment on embedded plat-
forms. For instance, the package ifm3d_ros_msgs can be installed independently of the other

120 Chapter 4. ROS wrappers for ifm3d

O3R

packages to control the camera from a separate computing platform. The ifm3d_ros_exam-
ples holds our launch files and examples.

Building and installing the software

1. Preparing your system: Noetic

2. Installing the ifm3d-ros node

LICENSE

Please see the file called LICENSE.

4.1.2 The ifm3d_ros_driver package

ROS Interface

The core ifm3d-ros sensor interface is implemented as a ROS nodelet. This allows for
lower-latency data processing vs. the traditional out-of-process node-based ROS interface
for applications that require it. However, we ship a launch file with this package that allows
for using the core ifm3d-ros driver as a standard node. To launch the node, the following
command can be used:

$ roslaunch ifm3d_ros_examples camera.launch

Note: Please notice the use of the subpackage ifm3d_ros_examples.

For further information about the internal ROS nodelet infrastructure and how to apply this
to your application, please see our exemplary launch files and a short run down on the nodelet
structure in the ifm3d_ros_examples/README.

4.1. ifm3d-ros 121

O3R

Nodelet - parameters

Name Data
Type

De-
fault
Value

Description

~as-
sume_sw_trig-
gered

bool false This provides a hint to the driver that the camera is configured for
software triggering (as opposed to free running). In this mode, cer-
tain default values are applied to lessen the noise in terms of timeouts
from the frame grabber.

~frame_id_basestring ifm3d/cam-
era

This string provides a prefix into the tf tree for ifm3d_ros coordinate
frames.

~frame_la-
tency_thresh

float 60.0 Time (seconds) used to determine that timestamps from the camera
cannot be trusted. When this threshold is exceeded, when compared
to system time, we use the reception time of the frame and not the
capture time of the frame.

~ip string192.168.0.69The IP address of the VPU.

~pass-
word

string“” The password required to establish an edit session on the VPU

~schema_maskuint160xf The pcic schema mask to apply to the active session with the frame
grabber. This determines which images are available for publication
from the camera. More about pcic schemas can be gleaned from the
ifm3d projects documentation.

~time-
out_mil-
lis

int 500 The number of milliseconds to wait for the framegrabber to return
new frame data before declaring a “timeout” and to stop blocking on
new data.

~time-
out_tol-
er-
ance_secs

float 5.0 The wall time to wait with no new data from the camera before trying
to establish a new connection to the camera. This helps to providero-
bustness against camera cables becoming unplugged or other in-field
pathologies which would cause the connection between the ROS node
and the camera to be broken.

~sync_clocks
DEP-
RE-
CATED

bool false Attempt to sync the camera clock to the system clock at start-up. The
side-effect is that timestamps on the image should reflect the capture
time as opposed to the receipt time.

~xml-
rpc_port

unint1680 The TCP port the camera’s xmlrpc server is listening on for requests.

~pcic_portunint1650010The TCP (data) port the camera’s pcic server is listening on for re-
quests.

122 Chapter 4. ROS wrappers for ifm3d

https://www.ifm3d.com

O3R

Nodelet - published Topics

Name Data Type Description

ampli-
tude

sen-
sor_msgs/Im-
age

The normalized amplitude image.

confi-
dence

sen-
sor_msgs/Im-
age

The confidence image.

cloud sen-
sor_msgs/Point-
Cloud2

The point cloud data, i.e. X-, Y-, Z-coordinates.

dis-
tance

sen-
sor_msgs/Im-
age

The radial distance image.

raw_am-
pli-
tude

sen-
sor_msgs/Im-
age

The raw (non normalized) amplitude image.

good_bad_pix-
els

sen-
sor_msgs/Im-
age

The binary image representation of the confidence image.

xyz_imaegesen-
sor_msgs/Im-
age

A 3-channel image encoding of the point cloud. Each of the three
image channels represents a spatial data plane encoding the x, y, z
Cartesian values respectively.

unit_vec-
tors

sen-
sor_msgs/Im-
age

The rotated unit vectors.

extrin-
sics

ifm3d/Ex-
trinsics

The extrinsic calibration of the camera with respect to the camera
optical frame. This 3D pose is encoded in mm and rad.

Note: Some topics may have empty data fields. We are working on publishing data
on all available topics, but have kept all previous topics active for the moment for
legacy reasons.

Nodelet - subscribed Topics

None.

4.1. ifm3d-ros 123

O3R

Nodelet - advertised Services

Note: the services are provided by the ifm3d_ros_msgs package.

Name Service
Defini-
tion

Description

Dumpifm3d/DumpDumps the state of the camera system as a JSON (formatted as a string)

Con-
fig

ifm3d/Con-
fig

Provides a means to configure the VPU and Heads (imager settings),
declaratively from a JSON (string) encoding of the desired settings.

Soft-
Off

ifm3d/Soft-
Off

Sets the active application of the camera into software triggered mode
which will turn off the active illumination reducing both power and heat.

SoftOnifm3d/SoftOnSets the active application of the camera into free-running mode. Its
intention is to act as the inverse of SoftOff.

Trig-
ger

ifm3d/Trig-
ger

Requests the driver to software trigger the imager for data acquisition.

Known limitations

Additional Documentation

• Inspecting and configuring the camera / imager settings

• Troubleshooting

LICENSE

Please see the file called LICENSE.

4.1.3 The ifm3d_ros_msgs package

This package provides the messages and services interfaces for the ifm3d_ros_driver pack-
age. It can be installed independently of the driver package ifm3d_ros_driver and examples
package ìfm3d_ros_examples.

Standalone Installation of the messages packages

If you plan on installing only one subpackage please see the instructions below.

catkin_make --only-pkg-with-deps <target_package>

Please replace the tag <target_package> with the name of the package you want to compile:

• ifm3d_ros_driver

• ifm3d_ros_msgs

124 Chapter 4. ROS wrappers for ifm3d

O3R

• ifm3d_ros_examples

Some of our subpackages have dependencies to other packages and therefore will trig-
ger a compiling of more subpackages, namely the packages ifm3d_ros_examples and
ifm3d_ros_driver. These subpackges can not be used standalone.

Don’t forget to switch back to building all packages afterwards:

catkin_make -DCATKIN_WHITELIST_PACKAGES=""

LICENSE

Please see the file called LICENSE.

4.1.4 The ifm3d_ros_examples package

This package provides examples and helper scripts for using the ifm O3R camera platform.

Launchfiles

Please see the list below for launch files shipped with the examples package:

Name Description

six_cameras.
launch

Launches six nodes, reading data streams on ports 0, 1, 2, 3, 4 and 5. Provide
coordinate frame transforms for each node. Note: you can use this example for
less than six heads, but you will get a timeout error where no heads are connected.
This does not disrupt the proper functioning of the connected heads.

nodelet.
launch

This is handling the nodelet manager which makes it possible to launch a nodelet
similarly as you would a simple node.

head.
launch

Launches two data streams for both the 2D RGB imager and 3D TOF imager on
a camera head. Default ports are 0 (pcic_port:=50010) and 2 (pcic_port:=50012).
For different port numbers input port as a parameter when launching.

camera.
launch

Launches a single camera stream - so only 3D data or 2D RGB data. This launch
file is comparable to a single camera setup (O3Ds and O3Xs)

Nodelet launch structure

Note: The O3R platform can handle multiple data streams.*The camera.launch file
only launches a node for one data stream, on the default pcic port 50010. To launch
a node for a different port, use:

$ roslaunch ifm3d_ros_driver camera.launch pcic_port:=<PORT_NUMBER>

The launch file(s) encapsulate several features:

1. It (partially) exposes the camera_nodelet parameters as command-line arguments for
ease of runtime configuration.

2. It instantiates a nodelet manager which the camera_nodelet will be loaded into.

3. It launches the camera nodelet itself.

4.1. ifm3d-ros 125

O3R

4. It publishes the static transform from the camera’s optical frame to a traditional ROS
sensor frame as a tf2 static_transform_publisher.

You can either use this launch file directly, or, use it as a basis for integrating ifm3d_ros into
your own robot software system.

Note: the O3R camera heads carry two imagers, a 3D time-of-flight and a RGB
imager.

We provide the head.launch launchfile to handle a whole O3R camera head, that starts two
nodes, one for the RGB image (we assume it is plugged in port 0), and one for the 3D imager
(we assume it is plugged in port 2).

Building launch files distributed systems

Note: This is WIR. We are currently working on Docker images which will allow you
an easy deployment of our ROS node to the VPU.

LICENSE

Please see the file called LICENSE.

4.2 ifm3d-ros2

This release is intended to be used with the O3R camera platform ONLY. For other
ifm cameras please see release tag v0.3.0.

NOTE: The ifm3d-ros2 package has had major changes recently. Please be aware
that this might cause problems on your system for building pipelines based on our
old build instructions.We tried to ensure backward compatibility where ever possible. If
you find any major breaks, please let us know.

ifm3d-ros2 is a wrapper around ifm3d enabling the usage of ifm O3R ToF camera platform
from within ROS 2 software systems.

126 Chapter 4. ROS wrappers for ifm3d

https://github.com/ifm/ifm3d
https://index.ros.org/doc/ros2/

O3R

4.2.1 Software Compatibility Matrix

ifm3d_ros2 version ifm3d version ROS 2 distribution

1.0.0 0.92.0 Galactic

0.3.0 DEPRECATED 0.17.0 Dashing, Eloquent

0.2.0 DEPRECATED 0.12.0 Dashing

0.1.1 DEPRECATED 0.12.0 Dashing

0.1.0 DEPRECATED 0.12.0 Dashing

Note: ifm3d_ros2 version 1.0.0 is released as an early developer release for the
O3R camera.

4.2.2 Building and Installing the Software

Pre-requisites

1. ROS2

2. ifm3d - be sure to build the IMAGE module (using PCL and OPENCV).

In addition to the base packages found in ros-*-desktop-full you will need the following
ROS packages:

• cv_bridge

• vision_opencv

• pcl-conversions

These two packages are only required for testing but not at runtime:

• launch_testing

• launch_testing_ament_cmake

4.2. ifm3d-ros2 127

https://docs.ros.org/en/galactic/Installation.html
https://ifm.github.io/ifm3d-docs/content/source_build.html

O3R

On debian based systems theymay be installed as follows (replacing galacticwith your target
ROS2 distribution).

$ sudo apt install ros-galactic-cv-bridge ros-galactic-vision-opencv ros-galactic-pcl-

→˓conversions

$ sudo apt install ros-galactic-launch-testing ros-galactic-launch-testing-ament-cmake

Building from source

Please see the separate building instruction for building from source: here

Launch the node

Launch the camera node (assuming you are in ~/colcon_ws/):

$. install/setup.bash

$ ros2 launch ifm3d_ros2 camera_managed.launch.py

Note: we also provide a helper launch file to start multiple camera nodes. See the
documentation here.

Open another shell and start the RVIZ node to visualize the data coming from the camera:

$ ros2 launch ifm3d_ros2 rviz.launch.py

Note: rviz.launch.py does not include the camera node itself, but subscribes
to published topics (distance, amplitude, etc). A camera node need to be run-
ning in parallel to rviz (you can use camera_managed.launch). Note also that the
rviz.launch.py launchfile assumes one data stream publishes at /ifm3d/camera/
<topic_name>.

At this point, you should see an rviz window that looks something like
the image below (note that this is the view from 3 camera heads):

128 Chapter 4. ROS wrappers for ifm3d

O3R

Congratulations! You can now have complete control over the O3R perception platform from
inside ROS.

4.2.3 ROS Interface

4.2. ifm3d-ros2 129

O3R

Parameters

Name Data
Type

De-
fault
Value

Description

~/frame_la-
tency_thresh

float 1.0 Time (seconds) used to determine that timestamps from the camera
cannot be trusted. When this threshold is exceeded, when compared
to system time, we use the reception time of the frame and not the
capture time of the frame.

~/ip string192.168.0.69The ip address of the camera.

~/pass-
word

string The password required to establish an edit session with the camera.

~/schema_maskint16 0xf The schemamask to apply to the active session with the frame grabber.
This determines which images are available for publication from the
camera. More about schemas can be gleaned from the ifm3d project

~/time-
out_mil-
lis

int 500 The number of milliseconds to wait for the framegrabber to return new
frame data before declaring a “timeout” and to stop blocking on new
data.

~/time-
out_tol-
er-
ance_secs

float 5.0 The wall time to wait with no new data from the camera before trying
to establish a new connection to the camera. This helps to provide ro-
bustness against camera cables becoming unplugged or other in-field
pathologies which would cause the connection between the ROS node
and the camera to be broken.

~/sync_clocks
DEP-
RE-
CATED

bool false Attempt to sync the camera clock to the system clock at start-up. The
side-effect is that timestamps on the image should reflect the capture
time as opposed to the receipt time. Please note: resolution of this
sync is only granular to 1 second. If fine-grained image acquisition
times are needed, consider using the on-camera NTP server (available
on select camera models).

~/xml-
rpc_port

uint1680 The TCP port the camera’s xmlrpc server is listening on for requests.

~/pcic_portuint1650010The TCP (data) port the camera’s pcic server is listening on for re-
quests.

130 Chapter 4. ROS wrappers for ifm3d

O3R

Published Topics

Name Data Type Quality of Ser-
vice (QoS)

Description

ampli-
tude

sen-
sor_msgs/msg/Im-
age

ifm3d_ros::LowLa-
tencyQoS

The normalized amplitude image

cloud sen-
sor_msgs/msg/Point-
Cloud2

ifm3d_ros::LowLa-
tencyQoS

The point cloud data

confi-
dence

sen-
sor_msgs/msg/Im-
age

ifm3d_ros::LowLa-
tencyQoS

The confidence image

distance sen-
sor_msgs/msg/Im-
age

ifm3d_ros::LowLa-
tencyQoS

The radial distance image

raw_am-
plitude

sen-
sor_msgs/msg/Im-
age

ifm3d_ros::LowLa-
tencyQoS

The raw amplitude image (currently
not available for the O3R)

rgb sen-
sor_msgs/msg/Im-
age

ifm3d_ros::LowLa-
tencyQoS

The RGB 2D image of the 2D imager

Subscribed Topics

None.

Advertised Services

Name Service
Definition

Description

Dumpifm3d/DumpDumps the state of the camera parameters to JSON

Con-
fig

ifm3d/Con-
fig

Provides a means to configure the camera and imager settings, declar-
atively from a JSON encoding of the desired settings.

4.2.4 Additional Documentation

• Inspecting and configuring the camera/imager settings

• Building the ROS node from source

• Visualization

• Running the ROS node on a distributed system

• ifm3d API RPC error codes

4.2. ifm3d-ros2 131

O3R

4.2.5 ToDo

We are currently working on rounding out the feature set of our ROS2 interface. Our current
objectives are to get the feature set to an equivalent level to that of our ROS1 interface
and to tune the ROS2/DDS performance to optimize the usage of our cameras from within
ROS2 system (for different DDS implementations).Thanks for your patience as we continue
to ensure our ROS2 interface is feature-rich, robust, and performant. Your feedback is greatly
appreciated.

4.2.6 Known limitations

This ROS 2 node build on top of the ifm3d API which handles the data communication between
the camera platform and the outside world. This is based on ASIO which conflicts with the
DDSmiddleware fastRTPS implementation in ROS (until ROS foxy). We are currently working
on a solution. Until then we suggest to use cyclone DDS for older ROS 2 distributions.

4.2.7 LICENSE

Please see the file called LICENSE.

132 Chapter 4. ROS wrappers for ifm3d

CHAPTER

FIVE

RESOURCES AVAILABLE FOR DOWNLOAD

5.1 Previous versions of the documentation

Document firmware version ifm3d version ifm3d-ros1 version ifm3d-ros2 version

2022-02-22 13.13 0.92.x 1.0.0 1.0.0

133

O3R

134 Chapter 5. Resources available for download

PYTHON MODULE INDEX

i
ifm3dpy, 102

135

O3R

136 Python Module Index

INDEX

A
active_application() (ifm3dpy.Camera

method), 105
am_i() (ifm3dpy.CameraBase method), 109
amplitude_image() (ifm3dpy.ImageBuffer

method), 113
application_list() (ifm3dpy.Camera

method), 105
application_types() (ifm3dpy.Camera

method), 105

C
Camera (class in ifm3dpy), 104
CameraBase (class in ifm3dpy), 108
cancel_session() (ifm3dpy.Camera

method), 106
check_minimum_firmware_version()

(ifm3dpy.CameraBase method),
109

confidence_image() (ifm3dpy.ImageBuffer
method), 113

copy_application() (ifm3dpy.Camera
method), 106

create_application() (ifm3dpy.Camera
method), 106

D
delete_application() (ifm3dpy.Camera

method), 106
device_parameter() (ifm3dpy.CameraBase

method), 110
device_type() (ifm3dpy.CameraBase

method), 110
distance_image() (ifm3dpy.ImageBuffer

method), 113

E
export_ifm_app() (ifm3dpy.Camera

method), 106
export_ifm_config() (ifm3dpy.Camera

method), 107

exposure_times() (ifm3dpy.ImageBuffer
method), 113

extrinsics() (ifm3dpy.ImageBuffer
method), 113

F
factory_reset() (ifm3dpy.Camera method),

107
factory_reset() (ifm3dpy.O3RCamera

method), 116
force_trigger() (ifm3dpy.CameraBase

method), 110
FrameGrabber (class in ifm3dpy), 111
from_json() (ifm3dpy.CameraBase method),

110

G
get() (ifm3dpy.O3RCamera method), 116
get_init() (ifm3dpy.O3RCamera method),

116
get_init_status() (ifm3dpy.O3RCamera

method), 116
get_schema() (ifm3dpy.O3RCamera

method), 116
gray_image() (ifm3dpy.ImageBuffer

method), 113

H
heartbeat() (ifm3dpy.Camera method), 107

I
ifm3dpy

module, 102
illu_temp() (ifm3dpy.ImageBuffer method),

114
ImageBuffer (class in ifm3dpy), 112
imager_types() (ifm3dpy.Camera method),

107
import_ifm_app() (ifm3dpy.Camera

method), 107
import_ifm_config() (ifm3dpy.Camera

method), 107

137

O3R

intrinsics() (ifm3dpy.ImageBuffer
method), 114

inverse_intrinsics()
(ifm3dpy.ImageBuffer method), 114

ip (ifm3dpy.CameraBase attribute), 109

J
jpeg_image() (ifm3dpy.ImageBuffer

method), 114
json_model() (ifm3dpy.ImageBuffer

method), 114

L
lock() (ifm3dpy.O3RCamera method), 116

M
module

ifm3dpy, 102

O
O3RCamera (class in ifm3dpy), 115
organize() (ifm3dpy.ImageBuffer method),

114

P
password (ifm3dpy.Camera attribute), 105

R
raw_amplitude_image()

(ifm3dpy.ImageBuffer method), 115
reboot() (ifm3dpy.CameraBase method),

110
request_session() (ifm3dpy.Camera

method), 107
reset() (ifm3dpy.FrameGrabber method),

111

S
save_init() (ifm3dpy.O3RCamera method),

116
session_id (ifm3dpy.Camera attribute), 105
set() (ifm3dpy.O3RCamera method), 116
set_current_time() (ifm3dpy.Camera

method), 108
set_temporary_application_parameters()

(ifm3dpy.Camera method), 108
sw_trigger() (ifm3dpy.FrameGrabber

method), 111

T
timestamp() (ifm3dpy.ImageBuffer method),

115

to_json() (ifm3dpy.CameraBase method),
111

trace_logs() (ifm3dpy.CameraBase
method), 111

U
unit_vectors() (ifm3dpy.Camera method),

108
unit_vectors() (ifm3dpy.ImageBuffer

method), 115
unlock() (ifm3dpy.O3RCamera method), 116

W
wait_for_frame() (ifm3dpy.FrameGrabber

method), 112
who_am_i() (ifm3dpy.CameraBase method),

111

X
xmlrpc_port (ifm3dpy.CameraBase at-

tribute), 109
xyz_image() (ifm3dpy.ImageBuffer method),

115

138 Index

	Everything related to the O3R family
	Products Description
	FIRMWARE 0.13.13 RELEASE NOTES !!!!!PRELIMINARY!!!!
	Previous Releases
	Compatible Image Processing Platforms
	Supported Heads
	General Features
	ifm Camera Usage
	3D-Camera Features
	RGB-Camera Features
	Known Issues
	Look forward to these features in future releases
	Update Firmware Procedure:

	Images description
	Description of the available images
	Raw Amplitude image and Amplitude image
	Distance image (radial)
	Distance noise (radial)
	Confidence
	Reflectivity
	Point cloud (XYZ)
	Unit vectors
	JPEG image

	The confidence image

	Getting Started
	Hardware unboxing
	Software installation instructions
	Network configuration
	Software installation

	Parameters
	Settings Description
	Acquisition Settings
	Modes
	Exposure Times
	Offset
	Framerate

	Filters
	Maximum Distance Noise
	Minimum Amplitude
	Adaptive Noise Bilateral Filter and Median Filter
	Temporal Filter
	Mixed Pixel Filtering
	Symmetry Threshold
	Stray light

	Acquisition settings
	Modes
	Description
	Example
	Related Topics

	Offset
	Description
	Example

	Filters
	Filtering Process
	Related Topics

	Maximum Distance Noise
	Abstract
	Description
	Example

	Related topics

	Minimum Amplitude
	Abstract
	Description
	Related topics

	Minimum Reflectivity
	Description
	Example
	Related topics

	Adaptive noise bilateral filter
	Abstract
	Description
	Example
	Scenes involving motion

	Related topics

	(Spatial) Median Filter
	Abstract
	Description
	Example
	Bilateral vs. median filtering
	Disadvantages of the median filter
	Bilateral and median filters combined

	Related topics

	Temporal Filter
	Abstract
	Description
	Examples
	Reducing Noise
	Recovering Lost Pixels

	Related settings

	Mixed Pixel Filter
	Abstract
	Description
	Angle based validation method
	Distance based validation method (will be deprecated)

	Examples
	Different angle threshold values

	Symmetry Threshold
	Abstract
	Description
	Example

	Stray Light Filter
	Abstract
	The stray light phenomenon
	First case: The stray light halo
	Handling stray light halos
	Second case: “Ghost” pixels
	Handling “ghost” pixels

	Fine tuning the stray light filter
	Obstacle detection
	Scene without reflector:
	Scene with reflector:
	Adjusting the distance threshold
	Multiple reflectors in the scene

	Conclusion

	Docker on O3R
	Build and run a docker container for the O3R platform
	A basic container
	Build the container
	Troubleshooting: proxies

	Run a container
	Save a container

	Load and start a container
	Add features to the container
	Install ifm3d in the container
	Building on top of the ifm base image

	Deploying a container to the VPU
	SSH connection
	1. Generate ssh key-pair
	2. Upload the public key to the VPU
	3. Connect to the VPU using the passphrase

	SCP
	Local docker registry
	Create a local Docker registry
	Push a container to your local registry
	Pull a container from the local registry - host
	Pull a container from the local registry - VPU
	Stop the registry

	Autostart a container on the VPU
	Docker compose
	Sample docker-compose.yml

	Start the container(s)
	Auto start the container(s) after a reboot of the VPU
	Save data on consistently on the VPU with a container

	Enabling GPU usage on the VPU
	Using the GPU of the VPU
	Dockerfile sample
	Start the container with the NVIDIA runtime
	Using docker run
	Use docker-compose to specify the runtime

	FAQ - Frequently Asked Questions

	ifm3d library
	ifm3d Overview
	Release versions
	Current Revision
	Organization of the Software
	Additional Resources
	Known Issues, Bugs, and our TODO list
	LICENSE

	Installing the software
	O3R early adopters
	Installing ifm3d from source
	Build Dependencies
	Building From Source
	The default build
	Building with PCL and/or OPENCV
	Building the Python Bindings
	A sumo-build
	Building the examples
	Building debian packages

	Building ifm3d from source on Windows
	Dependencies
	Build tools
	Binary Dependencies for ifm3d::image and ifm3d::opencv optional modules
	PCL
	OpenCV 3.4
	Source Dependencies
	Building source dependencies with ifm3d
	Buidling the source dependencies independent of ifm3d
	Environment Configuration
	curl
	xmlrpc-c
	glog
	gtest

	Building ifm3d
	Running the ifm3d command line tool
	Appendix A: Building without PCL
	Select the OpenCV Image Container

	Python installation
	Check the ifm3dpy installation

	Docker dev containers

	Stable release
	Ubuntu Linux via Apt (amd64/arm64)
	Linux for Tegra
	ROS/ROS2

	Basic Library Usage
	First steps with ifm3d/ifm3dpy
	RUN/CONF/IDLE
	Receive an image

	How to: configure the camera
	Read the current configuration
	Write a new configuration
	The full example

	How to: receive an image
	O3RCamera, FrameGrabber and StlImageBuffer
	Receive an image
	Access the data
	The full example

	How to: receive data from multiple heads

	ifm3d - Command Line Tool
	Overview
	Camera and Imager Configuration
	Dump
	Config

	Examples
	Creating new applications
	Setting NTP-Server connection on the camera
	Setting the time on the camera

	Python API Reference
	ifm3dpy Module
	Variables
	Classes
	Camera
	CameraBase
	FrameGrabber
	ImageBuffer
	O3RCamera

	C++ API Reference

	Indices and tables
	ROS wrappers for ifm3d
	ifm3d-ros
	ifm3d-ros
	Release versions
	ifm3d-ros for the O3R
	Software Compatibility Matrix
	Internal ifm3d-ros subpackage version structure

	Organization of the software
	Building and installing the software
	LICENSE

	The ifm3d_ros_driver package
	ROS Interface
	Nodelet - parameters
	Nodelet - published Topics
	Nodelet - subscribed Topics
	Nodelet - advertised Services
	Known limitations

	Additional Documentation
	LICENSE

	The ifm3d_ros_msgs package
	Standalone Installation of the messages packages
	LICENSE

	The ifm3d_ros_examples package
	Launchfiles
	Nodelet launch structure

	Building launch files distributed systems
	LICENSE

	ifm3d-ros2
	Software Compatibility Matrix
	Building and Installing the Software
	Pre-requisites
	Building from source
	Launch the node

	ROS Interface
	Parameters
	Published Topics
	Subscribed Topics
	Advertised Services

	Additional Documentation
	ToDo
	Known limitations
	LICENSE

	Resources available for download
	Previous versions of the documentation

	Python Module Index
	Index

